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ABSTRACT

Unforeseen faults during flight can lead to Loss of Control In-Flight (LOC-I), a significant cause of
fatal aircraft accidents worldwide. Current offline synthesized, model based flight control methods
have limited capability to adapt to unforeseen situations. From a fault tolerance perspective, the
Incremental Approximate Dynamic Programming (iADP) controller serves as an ideal model-
agnostic, online adaptive control method. This method integrates an online identified locally
linearized incremental model with a Reinforcement Learning (RL) based optimization technique,
to minimize an infinite horizon quadratic cost-to-go. A key challenge which limits the adoption
of these self-learning control methods for flight control is V&V through flight testing. This study
addresses the problem by exploring tools, methods and framework for V&V of the online adaptive
Flight control law on a CS-25 class Citation-II passenger aircraft. These flight tests mark world’s
first demonstration of an online RL based automatic Flight Control System (FCS) for this aircraft
category, demonstrating real-time learning and adaptation capabilities.

Keywords: Verification and Validation (V&V), Reinforcement Learning, Online Adaptive Flight Control, Flight
Testing
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1 Introduction
LOC-I is an off-nominal flying condition, where the aircraft deviates from the normal flight envelope

and is a leading cause of accidents in commercial aviation [1]. With the trend towards autonomous and
complex aerospace systems, one can only expect an increase in such LOC-I incidents unless proactive
measures are taken. Factors contributing to LOC-I include adverse onboard conditions (such as faults,
failures, and crew errors), external hazards (like icing, wind shear, and turbulence), and abnormal flight
conditions (such as unusual attitudes) [2]. Developing an integrated fault-tolerant resilient Flight Control
Law (FCL) is imperative to enhance safety under off-nominal conditions, addressing parametric failures
and abnormal flight scenarios. Some main challenges in designing such a controller include degradation
of performance of model based controllers due to low confidence in the aircraft model post-failure,
non-linearities in the model post-failure, and the need for rapid adaptation of the controller to restore the
aircraft to the safe flight envelope.

Self-learning Adaptive FCS algorithms were initially tested in the 1960s on the X-15 research aircraft
[3]. Some of the open challenges in realizing adaptive FCS include sample efficiency, convergence,
robustness of controller, and interpretability of the controller adaptive mechanism [4]. RL is a machine
learning technique, where an agent could learn the optimal strategy(control scheme) to achieve a defined
goal, using a scalar feedback reward signal, using a Dynamic Programming based optimization technique
[5–7]. Although several variants of RL based FCS design are being developed [8, 9], practical V&V
constraints guided the choice of this RL based FCS [10, 11] design. An essential part of certifying these
resilient adaptive FCS for safety-critical operations involves establishing a V&V process. This process
ensures that the FCS undergoes testing to identify system weaknesses and vulnerabilities.

Although adaptive FCS holds potential, none have received Federal Aviation Administration (FAA)
certification for use in the National Air Space (NAS) [12, 13]. Some of the observed gaps in extending
V&V for adaptive control include undefined specifications, instability-proof challenges, lack of high-
fidelity simulations incorporating nonlinear effects, absence of effective monitoring tools, the need for
a certification plan addressing robustness and control architecture sensitivity, and non-determinism of
intelligent and reasoning algorithms [14]. EASA has developed guidelines to ensure the safe integration
of AI in aviation, including frameworks for V&V to meet stringent safety standards, crucial for the
certification of adaptive control systems using Machine Learning (ML) [15]. However, these guidelines
are confined to ML algorithms that assist humans and facilitate human-machine collaboration, excluding
more autonomous systems, which is the focus of this research work.

The contribution of this paper is V&V of RL-based online adaptive FCS, encompassing the tools and
methods. A background study on methodologies used to certify model based control laws to satisfy FAA
airworthiness requirements is conducted. An overlap in these methods and tools with FCS being tested
is first identified and then adapted along with some custom V&V methods. The technical scope of this
study is limited to V&V excluding the interaction of human with the adaptive system. Firstly, the control
design specifications are formulated, taking into account the possibilities and limitations arising from
the testing platform, available software tools, aircraft models, and required hardware. The procedure
to verify that the designed flight controller has met the flight control objectives through desktop, and
real-time simulations is presented. Lastly, the procedure to validate the functionality of the FCS through
successful flight test campaigns is detailed.

The structure of the paper is organized as follows: Section 2 briefly covers the background infor-
mation on the control methodology, FCS architecture design, control design specifications, available
hardware, software, and models used for V&V. Section 3 provides information on different tools, meth-
ods, and frameworks used to conduct V&V. Section 4 delves into verification tests conducted to ensure
compliance with the defined controller design requirements, followed by validation of controller function-
ality, focusing on the results obtained from the flight test campaign. Lastly, Section 5 includes outcome,
concluding remarks, and potential future work.
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2 Background: Flight Control Law Design for Cessna Citation II

2.1 Incremental Approximate Dynamic Programming

Fig. 1 Cessna Citation II (PH-LAB) Research Aircraft
Captured by Alan Wilson. Image licensed under CC BY-SA 2.0.

The Incremental Approximate Dynamic
Programming (iADP) algorithm provides a
framework for optimal control design, well-
suited for nonlinear dynamical systems like
aircraft. iADP formulates the optimal con-
trol design problem within the framework of
RL, where an agent interacts with the en-
vironment to minimize discounted infinite
horizon cost or cost-to-go. However, tradi-
tional RL methods, such as Dynamic Pro-
gramming (DP), face challenges with high-
dimensional systems(Curse of Dimensional-
ity). To handle this issue, iADP employs an
approximate value function, quadratic in the
state, ensuring computational tractability for
online implementation. Utilizing an incre-
mental model representation, the algorithm
linearizes the nonlinear system to provide a
locally linearized incremental model at each timestep using a Recursive Least Squares (RLS) method.
Online incremental model identification, facilitated by sample efficient Approximate Dynamic Pro-
gramming(ADP) algorithm, ensures adaptability and real-time implementation, making iADP a suitable
algorithm for designing fault-tolerant FCLs for nonlinear systems. This algorithm has two variants: one
for systems with full state feedback and another for systems with partial observability, where input-output
measurements are utilized for controller design [10, 16]. iADP was used to design FCL for a nonlinear
F-16 aircraft model and validated for online adaptation in case of failures in [17]. iADP based FCL
design for rate control on a CS-25 class aircraft, along with control architecture, control law evaluation
strategy, controller integration, and a summary of the flight test results [11], which forms the foundation
for this study.

2.2 PH-LAB for Flight Control Law V&V
The Cessna Citation II (PH-LAB) research aircraft (fig. 1), jointly operated by TU Delft and the

Netherlands Aerospace Center (NLR) is certified under CS-25 specifications for large aircraft. The
standard configuration of the Cessna Citation includes a reversible FCS connected to the pilot’s yoke and
pedals, along with an asymmetric pair of ailerons, a symmetric pair of elevators, and a single rudder.
Additionally, it features an autopilot system, activated by clutch-engaged servo motors linked to the
control surface cables. For testing the experimental flight control functions, the aircraft is equipped with
an experimental fly-by-wire (FBW) system, as detailed in [18], which has undergone exhaustive testing
to be certified under EASA CS-25. This FBW system ensures that the flight control surfaces follow the
desired actuator commands through feedback signals from actuator servos. Additionally, the aircraft had
an upgrade of several sensor systems and is equipped with a Flight Test Instrument System that includes
a data acquisition computer and a signal conditioning unit for processing information from sensors,
with more information found in [18–20]. This setup makes this research aircraft an ideal experimental
platform for iADP-based FCS Design and subsequent V&V [21–25].
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Fig. 2 Incremental Approximate Dynamic Programming based Flight Control Law Architecture for Inner
Loop Rate Tracking. Decoupled Longitudinal and Lateral Reinforcement Learning Controllers for PH-LAB
Aircraft.

2.3 iADP based Flight Control System Design
The iADP algorithm is used to design the FCL for the inner loop, tracking desired pitch and roll

rate commands using three control surfaces: aileron, elevator, and rudder, as shown in fig. 2 (iADP
Rate Controller). Decoupled longitudinal and lateral controllers are designed: the longitudinal control
loop tracks a pitch rate command using the elevator, while the lateral control loop tracks a roll rate
command using the aileron and/or rudder. As this FCL is solely sensor-based, signal processing of sensor
measurements is performed to reduce the impact of noisy sensor signals. Smooth sensor measurements are
obtained by low-pass filtering relevant aircraft states and actuator position measurements. Aerodynamic
angles, namely angle of attack and sideslip angle, are acquired through a boom with attached vanes on the
aircraft. Complementary filtering of these angles is executed by combining them with inertial-reference
sensors. This architecture ensures a model-free and aircraft-independent inner loop control structure.
The iADP controller computes the required incremental control input at each time step, with the total
control input determined by adding the previous control surface measurement to the evaluated control
increment.

2.4 Aircraft Model preparation
While there are no established analytical methods to assess the quality of adaptive control laws,

simulation-based investigations are a cheap and safe, thus preferable alternative. To achieve insights into
the closed-loop behavior on a level comparable to experimental flight tests, a high-fidelity simulation
model, covering relevant real-world phenomena and nonlinear effects, is required. With controller V&V
in mind, these shall also include the boundaries of the flight envelope and off-nominal conditions. With
a long service as a research platform, the Cessna Citation II PH-LAB has been thoroughly investigated
throughout the flight envelope [26], and derived models of the aircraft and its sub-components were
validated against flight test data. The Delft University Aircraft Simulation Model and Analysis Tool
(DASMAT) [27] in the MATLAB/Simulink environment serves as the core for the high-fidelity rigid
body 6-DoF flight dynamic model of the Cessna Citation II. The aerodynamic model is based on the
Cessna Citation 500 and was adapted to the real geometry using flight test data [28]. From a flight control
perspective, actuator and sensor models are obviously of special interest, as they define the interaction
with the plant. In addition, flap and landing gear models are considered briefly, as they are deployed in
flight for validation of FCS adaptability to aircraft configurations.
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FBW system
Allowing the interaction between flight controller and aircraft, actuators and their modeling fidelity

take an important role in the development and validation of flight control algorithms. On the other
hand, verification of FCS with a high fidelity actuator model, before flight tests is mandatory to perform
tests under realistic circumstances. Next to passthrough behavior, a LoFi PT1-model of actuator with
integrator saturation is used. These linear models assume that commanded deflections are perfectly met
by the FBW-controller. In contrast, the HiFi model takes a physical approach to consider the interaction of
aerodynamic hinge moment, cable dynamics, and other nonlinear FCS-components like column weights
and springs. It includes the FBW-controller as implemented in the real aircraft and a model of the servo
and auto trim system. A detailed description can be found in [29].

Sensor Models
The PH-LAB flight test instrumentation provides numerous signals from sensor systems like Attitude

Heading and Reference System (AHRS), Digital Air Data Computer (DADC), air data boom, and control
surface deflections. The hardware setup is described in more detail in [18–20].

Aircraft Configuration
An indirect way to assess control law adaptability to failure, is to check for its adaptability to deal

with aircraft configuration changes like deploying either flaps or landing gear. Their main impact is on
the aerodynamics, thereby significantly altering the aircraft behavior. This effect is considered by the
aerodynamic look-up tables used within the flight dynamic model. Especially for large flap deflections
at higher flight speeds, noticeable fluctuations are present due to flow separation.

2.5 Flight Control Design Specifications

Table 1 iADP FCS Design Specifications. The last column indicates if V&V was conducted for the require-
ment.

Spec. ID Summary Description V&V

S01-MT Minimize Rate Tracking Error Ensure controller commands aircraft to follow pitch and roll rate commands ✓

S02-AC Adaptability to Aircraft Config. Ensure rate tracking task in different aircraft configurations ✓

S03-OP Robust against Operating Conditions Ensure rate tracking task in different operating conditions (Alt. and Vel. changes) ✓

S04-RR Reproducible results Consistent controller behaviour under similar conditions ✓

S05-MF Agnostic to Model Ensure acceptable controller behaviour without a priori knowledge of the model ✓

S06-RM Robustness to Model Uncertainties Acceptable Controller behaviour subjected to model uncertainties ✓

S07-SN Sensitivity to Noise, Bias & Delays Sensitivity of controller against sensor dynamics to be minimum ✓

S08-SP Low Sensitivity to hyperparameters Ensure stable controller learning over a wider controller tuning parameter range ✓

S09-DR Disturbance Rejection Acceptable controller learning process under turbulence and wind ✕

S10-CR Acceptable Controller Response Minimize steady state error, rise time and overshoot ✕

S11-CL Continuous Learning Ensure Stable continuous learning of controller over longer manoeuvres ✓

S12-IN Explainability of Learning Ensure Learning process can be explainable for post flight critical analysis ✓

S13-OM Online Monitoring Ensure real-time monitoring of critical parameters/data ✓

S14-FT Fault Tolerance Assess online adaptation for fault tolerance in engine failure scenarios. ✕

S15-HQ Handling Qualities Quantitative Handling Quality Assessment Using Time Domain Methods ✕

Flight Control Design specifications serve as a blueprint for control engineers, guiding them in the
design process to verify that the controller meets the desired criteria. These specifications aided in the
systematic validation of the controller’s performance and reliability, ensuring the FCS meets the intended
goals. Table 1 outlines the formulated FCS design requirements.
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3 Tools, methods and framework to conduct V&V

3.1 Tools for V&V assessment
MATLAB/Simulink has been selected as the preferred software for developing the iADP FCL. The

availability of the PH-LAB nonlinear aircraft model, the ability to produce C-code suitable for hardware
implementation, compatibility with real-time target machines like Speedgoat, rapid prototyping capabil-
ities, and established toolchains (MOPS) [30] for hyperparameter tuning serve as primary motivations
for this decision. Another advantage is the utilization of the Embedded Coder toolbox, facilitating the
generation of C-code compliant with aviation standards such as DO-178C [13].

DASMAT
Aircraft Model

Controller
C-Code

Real-Time
Aircraft Model

Controller
C-Code

LoggerSwitches/
Tuners

Data
Streaming

DUECA Middleware

FTIS Servos

Aircraft

Controller
C-Code

LoggerSwitches/
Tuners

Data
Streaming

DUECA
Interface

PC

Online
Monitoring

PC

DUECA Middleware

Model/Software in the Loop Hardware in the Loop Iron Bird/Ground Testing

Fig. 3 Simulation setup indicating various fidelity levels of the simulation setup from Model/Software in
the Loop, Processor in the Loop to final Iron-bird/Ground testing of the flight control laws.

During the initial development phase, a Model-in-the-Loop environment was utilized for rapid pro-
totyping and controller development, employing the DASMAT aircraft model, as depicted in fig. 3. A
modified version of this environment, referred to as Software-in-the-Loop, was created, where the con-
troller code was substituted with C-Code. This intermediate verification step ensures that the generated
C-code performs similarly to the original Simulink version of the controller. In the Hardware-in-the-
Loop phase, the DASMAT aircraft model is replaced with a real-time compatible model by converting
the original nonlinear Simulink-based aircraft model to C-code with defined sampling times. This real-
time model is then interfaced with the Delft University Environment for Communication and Activation
(DUECA), a middleware facilitating real-time implementation and communication of distributed sys-
tems [31]. DUECA encourages modular design and ensures real-time synchronization and exchange of
signals. After revising the automatically generated code to ensure the correct export of control functions,
the code is integrated into the real-time framework.

The controller code is encapsulated in a separate DUECA module, which manages the necessary
interfaces. DUECA ensures real-time synchronization via a master module overseeing all concurrently
operating modules at the base frequency, which, in this flight test scenario, was set at 1000 Hz. The
remaining DUECA modules, including switches/tuners for controller interfacing, are configured using
a graphical user interface (GUI). Another module of DUECA is designated for logging purposes. This
logger module accommodates two types of logging: first, it captures raw data from the aircraft sensors
via FTIS, while another logging system records data from the controller. The third DUECA module
serves as a data streaming module, where a subset of the controller logger data is selected and streamed
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in real time through a UDP sender. This real-time monitoring enables the observation of critical data,
providing insights into the health of controller subsystems during flight trials.

During the Iron bird/ground testing phase, the real-time aircraft model is replaced by the actual
aircraft, which is interfaced with sensors via the FTIS system and actuators via the Servos DUECA
module. The DUECA module operates on the flight control computer, equipped with an Intel® Core™
i5-3550S quad-core processor and runs Ubuntu 20.04 LTS with a real-time kernel (PREEMPT_RT)
[18, 32]. In this phase, the controller has access to the actual hardware setup of the aircraft, albeit on
the ground. This phase confirms the correct interfacing between the controller via the DUECA module
and sensors/actuators. This is verified by observing sensor data through logs/data streaming and issuing
dummy actuator commands. Two different PCs are set up to communicate with DUECA. One is used to
adjust switches and tuners, while the other PC is configured to receive live data via UDP communication.
Real-time data is monitored using the Simulink data inspector.

Another toolchain for automating flight data processing has been developed. This tool stores
information of the controller/aircraft hardware interfaces and converts raw flight log data into MATLAB-
supported .mat files, which can be easily read via the Simulink data inspector. This automated data
processing tool chain enabled quick identification of any issues in the controller post-flight and facilitated
the comparison of simulation/HIL data with flight test data. During the rapid controller prototyping
stage, MATLAB/Simulink inbuilt testing tools such as static unit testing frameworks, automated report
generation tools, code coverage analysis, and custom-made scripts are extensively utilized for verification.

3.2 Methods for V&V assessment
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Fig. 4 Structure of the Reinforcement Learning Agent of iADP Flight Control Law. Model Learning
provides the latest model estimates using the RLS algorithm. Controller Training evaluates(𝑉𝜋) the Control
Policy using incremental model estimates and one-step Cost. Controller Assessment takes actions and
improves Control Policy (𝜋) based on policy evaluation. The frequency at which each subsystem on the
Flight Control Computer runs is indicated below. •̂ denotes measured value, •̃ denotes estimated value, �̃�
denotes state transition matrix estimate and �̃� denotes controller effectiveness matrix estimate.

The V&V process of the iADP algorithm is done systematically, involving three sequential phases:
model learning, controller training, and controller evaluation, as illustrated in fig. 4. Two distinct imple-
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mentation approaches have been considered: sequential learning and continuous learning approaches. In
sequential learning, the controller undergoes three consecutive stages. Initially, a model learning phase,
during which the model parameters are determined and then fixed. Subsequently, these parameters are
passed on to the controller training phase, where, using the model parameters from the earlier phase,
and the observed error in rate tracking, the controller estimates the cost-to-go. Upon completion of the
controller training phase, the controller parameters are fixed and forwarded to the subsequent controller
evaluation phase. Here, the objective is to track the reference command based on these converged con-
troller parameters. In continuous learning, apart from the initial 20 seconds of the open-loop model
learning phase, all three stages run concurrently.

Optimization

Model 3

𝑮 (𝒔) + 𝚫

Model 2

𝑮 (𝒔)(1 + 𝚫)

Model 1

𝑮 (𝒔)

Simulation
& Analysis

Criterion
Computation

RL
Controller

Criterion Scaling
& Weighting

Optimizer

MOPS

Hyperparameters

Norm. Criterion
& Constraints

Data

u

Criterion
values

Fig. 5 Tuning hyperparameters of RL based control law for robustness using multi- model approach.
MOPS denotes Multi-Objective Parameter Synthesis, Norm. denotes Normalized, RL denotes Reinforcement
Learning,𝑮 (𝒔) denotes nominal plant,𝑮 (𝒔)+𝚫denotes nominal plant with additive uncertainties,𝑮 (𝒔)(1+𝚫)
denotes nominal plant with multiplicative uncertainties.

The DLR optimization tool Multi-Objective Parameter Synthesis (MOPS), is a software written in
MATLAB for solving general purpose parameter optimization problems but also features modules for
optimal control, system identification, design of experiments, and performing Monte Carlo simulation. A
parameterized run-script works as the central element for performing all of the previous tasks and allows
to set up analysis chains. Verification in the context of online adaptive control necessitates the use of
optimization algorithms, for example, to find a set of controller parameters that are robust with respect to
uncertainties, via anti-optimization [33, 34]. For instance, a development loop within MOPS for robust
control law design including verification would be:

1) Perform an optimization of the controller parameters for a set of cases. The cases could for
example be different models, operating points or environmental conditions as shown in fig. 5.

2) To check whether the found optimal parameter set is viable, perform an anti-optimization of
disturbances, (model) errors, failures, etc. with respect to the requirements given to the controller.
The found worst cases per criterion are added to the controller optimization of the previous step,
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forming an iteration loop. This loop should be run through until the anti-optimization cannot find
non-satisfactory cases anymore.

3) In the final step, a controller clearance can be performed, i.e. a Monte-Carlo simulation for
verification of the final controller design. This is similar to the anti-optimization step, as the
controller is again subjected to external sources of error and disturbances, but yields a statistical
measure for the safety/performance/robustness/... of the controller. Again, if requirements are
violated, the process should be started anew until an optimal and admissible set of parameters is
found.

Typically, control design requirements refer to mission performance (tracking error and disturbance
rejection), stability robustness with respect to key system parameters (mass, center of gravity) as well
as unmodelled dynamics (e.g. gain and phase margins), ride quality (passenger and pilot comfort by
bounds on allowable acceleration and minimum damping), safety (envelope safeguards), and control
activity (power consumed by the controls, control rates). In the context of RL, MOPS can be used to tune
the hyperparameters of the iADP algorithm by assessing the adaptive controller’s performance against
data simulated from models representative of design requirements. This methodology enables faster
control development as time-consuming manual tuning of hyperparameters of the learning algorithm is
automated. The design objective is to generate pareto-optimal design alternatives and to negotiate the
best-possible compromise solutions based on user priorities.

3.3 Framework for V&V assessment
A typical simplified FCL design process is outlined in fig. 6. Initially, the underlying problem

statement is transformed into control design requirements. These requirements are then translated
into method-specific design objectives, followed by the development of a control architecture capable
of achieving these objectives. At this point, the overarching design philosophy of the control law is
established, leading to the subsequent phase of control law software and hardware integration and testing,
which is an iterative process involving V&V. The process of testing the performance of the FCL against
the intended function defined through control design requirements is known as validation. Verification
involves the analysis and testing processes to ensure that the control algorithms perform as intended
and are correctly implemented in both software and hardware. This step also involves decomposing
higher system-level requirements into subsystem-level requirements. The verification step ensures that
the subsystem performance meets the requirements, followed by subsystem integration and an integration
test. This adheres to a classical - V framework for conducting V&V as shown in [35], where verified
subsystems are integrated to form the complete system, and final system-level verification tests are
conducted. In the context of the iADP control law, the iADP rate loop is segmented into subsystems,
the iADP longitudinal rate loop and iADP lateral rate loop. Individual iADP control loops are further
broken down into atomic subsystems of model learning, policy evaluation, and policy improvement
subsystems as shown in fig. 4, and are verified and validated against requirements. Common controller
subsystems such as the logger subsystem, switches/tuners, and data streaming subsystems are also verified
and validated for functionality, both offline and during the ground testing phase. The validation of the
controller is carried out through HIL ground tests and ultimately flight tests. Validation tasks include
ensuring that the FCC can manage the computational load of the recursive algorithms, the accuracy of
the controller commands on the ground, controller logging and real-time monitoring.

4 Verification & Validation of FCS
Verification involves analyzing and testing processes to confirm that FCS operates as intended,

ensuring accurate implementation in both software and hardware. Validation, on the other hand, assesses
the performance of FCS against defined requirements, using a set of criteria [35]. The V&V plan for
iADP FCS is designed to ensure that the control design specifications mentioned in the table are fulfilled.
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Fig. 6 V&V framework for iADP FCS Design for Fault Tolerant Flight Control.

Verification primarily utilizes offline simulation analysis, while validation involves Hardware in the Loop
and flight testing methods. Due to the decoupled nature of the iADP controller, every V&V procedure
is performed separately for each control loop. However, for the sake of brevity, the following sections
present the results from the V&V of only one loop(either longitudinal or lateral).

4.1 Simulation Analysis
To verify the FCS against the control design requirement S03-OP (Robust against operating condi-

tions) mentioned in table 1, we consider the flight conditions listed in table 2. This requirement ensures
that the iADP controller maintains rate tracking across different operating conditions, such as varying
velocities and altitudes. Assessing this requirement is crucial because aircraft dynamics change with
flight conditions, which are typically managed using gain scheduling. Robustness against varying

Table 2 Flight Conditions for iADP FCS verification for robustness against operating conditions. FC
denotes Flight Condition, 𝑉 denotes True Airspeed and ℎ denotes altitude.

FC1 FC2 FC3

V [m/s] 85 95 105
h [m] 2000 2000 2000

operating conditions is essential due to the unpredictability of flight conditions before a flight test. The
flight level (altitude) for testing depends on available airspace, which air traffic controllers communicate
to pilots a few hours before the trial. Although pilots can manually adjust airspeed, the controller must
not be overly sensitive to significant airspeed variations, given the lack of an auto-throttle on PH-LAB
to maintain minimal deviations in airspeed during the flight trial. The current iADP controller cannot
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handle large deviations in operating conditions because it does not incorporate velocity and altitude
information into its cost function. Including airspeed and altitude data from sensors in the cost function
could increase the size of state space in cost-to-go approximation, requiring more computations and
necessitating exploration of these new states during maneuvers.

The left-aligned time plots from fig. 7 show the iADP longitudinal controller’s pitch rate tracking
performance across different flight conditions listed in table 2, using the PH-LAB aircraft model in
a model-in-the-loop simulation setting. The controller is assessed in a continuous learning setting,
meaning the parameters are updated at every time step. All flight conditions are evaluated with fixed
hyperparameters. Despite being model-free, the absence of velocity and altitude information impacts the
tracking performance as expected, with lower tracking error observed at higher velocities and vice versa.

57 59 61 63

-0.5

0

0.5

1

1.5

2

Fig. 7 Verification of Controller Robustness to Operating Conditions through Simulations (V&V of re-
quirements S03-OP). NS refers to No Scheduling of hyperparameter Q with dynamic pressure, S refers to
with Scheduling of hyperparameter Q with dynamic pressure. FC refers to Flight Condition.

To ensure consistent tracking performance across different flight conditions, another set of simulations
was performed by scheduling the hyperparameter (the Q weighting matrix related to one-step tracking
error) with dynamic pressure. These results are shown on the right-aligned heat map plots in fig. 7.
The cumulative pitch rate tracking error is reduced with this hyperparameter scheduling, leading to more
consistent tracking errors across the three flight conditions, compared to the variability observed without
scheduling. Based on these results, the Q weighting matrix is scheduled with dynamic pressure for flight
tests in both longitudinal and lateral control loops. This scheduling maintains the rate control loop as
model-free since airspeed and altitude sensors are available on the aircraft, and these values are accessible
to the controller.

Table 3 Nominal hyperparameters for iADP longitudinal rate control(referred to as Lon.) and iADP
lateral rate control(referred to as Lat.). 𝜸𝑹𝑳𝑺 refers to forgetting factor of the Recursive Least Squares
(RLS) algorithm, 𝜸 refers to discount factor in Bellman’s equation, Q and R refer to weighing matrices in
one step cost function.

𝜸𝑹𝑳𝑺 𝜸 Q R

Lon. 0.99593 0.4 50 1

Lat. 0.99544 0.4 40

(
1 0
0 200

)
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Another key design requirement for learning-based controllers is to ensure low sensitivity to the
hyperparameters of the algorithms, defined as control design requirement S08-SP (Low sensitivity to
hyperparameters). To conduct the V&V for this requirement, a set of nominal hyperparameters for the
iADP algorithm are defined, as listed in table 3. The hyperparameters include 𝜸𝑹𝑳𝑺, the forgetting factor
of the Recursive Least Squares (RLS) algorithm, which affects the model prediction error and indirectly
influences the cost-to-go estimate. 𝜸 is the discount factor in Bellman’s equation, which discounts future
costs. 𝑄 and 𝑅 are weighting matrices in the one-step cost function, balancing the trade-off between the
tracking and the control effort required.

Fig. 8 Verification of Controller’s low sensitivity to iADP hyperparameters using Simulations (V&V of
requirements S08-SP). Norm. refers to Normalized values. min, nom, and max refer to the Minimum,
Nominal, and Maximum values of the hyperparameter.

Figure 8 plots two key metrics for assessing the controller performance: Σ ¤\𝑒𝑟𝑟, the cumulative pitch
rate tracking error for the trial, and 𝑚𝑎𝑥(Δ𝛿𝑒), the maximum value of the commanded increment to the
elevator deflection. These plots illustrate how these metrics vary with changes in the hyperparameters,
whose minimum and maximum values are defined w.r.t nominal value as [𝑛𝑜𝑚(1 ± Δ

100 )]. The Δ values
are (10, 10, 1) for (𝛾, 𝑄, 𝛾𝑅𝐿𝑆) respectively.

Key observations from the plots include: The metrics vary smoothly with the hyperparameters. An
increase in 𝛾 and𝑄 positively correlates with reduced cumulative tracking error and negatively correlates
with maximum elevator deflection. Sensitivity to R is not tested because the 𝑄/𝑅 ratio is the primary
influence on the metrics, which can be assessed by varying either 𝑄 or 𝑅. The correlation of 𝛾𝑅𝐿𝑆 with
the metrics is weak, as this parameter directly affects incremental model prediction and only indirectly
influences tracking error. Nonetheless, the controller performance remains smooth with respect to the
forgetting factor. These results suggest that the controller performance is robust to variations in the
hyperparameters, satisfying the low sensitivity of the hyperparameters requirement.

To ensure the V&V of control design requirement S06-RM (robustness to model uncertainties), we
employ the MOPS tool’s anti-optimization technique as detailed in Section 3.2. A significant challenge
in verifying robustness for online adaptive control methods like iADP lies in assessing the necessary
safety margins, given the limited theoretical foundations for adaptive control and stability margins. An
alternative approach involves generating multiple system models with uncertainties [36] and evaluating
the controller’s performance across these models.

This involves a two-step procedure:

1) Anti-Optimization Task: For a given set of flight conditions and a nominal iADP controller,
global search techniques such as genetic algorithm was used to find the combination of model
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Table 4 Uncertain parameters of PH-LAB aircraft for worst case optimization. Parameters for longitudinal
and lateral control are considered separately due to the decoupled iADP control structure. Physical units
are not shown, because the uncertainties are expressed in terms of percentages (e.g. +0.2 refers to +20% of
the nominal value). Center of gravity shifts are in meters. The symbols adhere to the conventional aircraft
coefficient notation.

Longitudinal Lateral

Parameter Min. Nom. Max. Parameter Min. Nom. Max.

𝚫𝜹𝒆 -0.03 0 0.03 𝚫𝜹𝒂 -0.03 0 0.03
𝚫𝑿𝒄𝒈 -0.05 0 0.05 𝚫𝒀𝒄𝒈 -0.03 0 0.03
𝚫𝑰𝒚𝒚 -0.05 0 0.05 𝚫𝑰𝒙𝒙 -0.1 0 0.1

𝚫𝑰𝒛𝒛 -0.08 0 0.08
𝚫𝑪𝒎𝒒 -0.1 0 0.1 𝚫𝑪𝒍𝒑 -0.1 0 0.1

𝚫𝑪𝒍𝒓 -0.1 0 0.1
𝚫𝑪𝒎𝜹𝒆

-0.1 0 0.1 𝚫𝑪𝒍𝜹𝒂 -0.1 0 0.1
𝚫𝑪𝒍𝜹𝒓 -0.1 0 0.1

uncertainties that most severely violate the performance criteria, referred to as anti-optimization.
This results in a worst-case model for the given controller.

2) Hyperparameter Tuning: This worst-case model is then used to tune the iADP controller’s
hyperparameters using another optimization routine that searches the hyperparameter space to
optimize the defined criteria.

To perform anti-optimization, a set of critical uncertain parameters are defined (see table 4). These
parameters, which differ for longitudinal and lateral control, are selected based on their relevance to
the clearance of FCL. The uncertainty ranges are based on data from [19] and [37]. For example,
uncertainties in the center of gravity position directly affect longitudinal stability and are linked to gain
margin. Changes in inertia can also impact both longitudinal and lateral stability and gain margins, with
these uncertainty effects varying depending on the aircraft type. Control effectiveness uncertainties can
alter gain margins in the respective axes and are therefore considered. Changes in damping derivatives can
affect the dynamic stability characteristics of the aircraft. A combination of the most relevant parameters
is used to generate worst-case models.

Using these parameters, multiple nonlinear aircraft models are generated. The GA2 algorithm, an
alternate implementation of a genetic algorithm based on enhanced techniques for selection, crossover,
and mutation most documented in [38], implemented within the MOPS tool, searches for the combination
of uncertain parameters and the nominal iADP controller, that results in the worst nonlinear performance
criterion. Figure 9 shows the anti-optimization results for lateral control, with the left plot illustrating the
lateral controller’s response to a roll rate command under different parameter uncertainties. The top right
plot shows how the criterion worsens with the number of evaluations as the genetic algorithm seeks the
model that maximizes the tracking error. The bottom right plot displays the parameter combinations for
different evaluations. The colors of all three plots correspond to the evaluation number. The worst-case
model is highlighted with a thick red line, and this combination of uncertain parameters is then used to
define the worst-case model for the subsequent iADP hyperparameter tuning.

Figure 10 illustrates the subsequent optimization of iADP hyperparameters to minimize the criteria for
the identified worst-case model. This is also done using the MOPS tool, and SQP(Sequential Quadratic
Programming) gradient-based local search algorithm is applied for this optimization procedure. Two
criteria are defined as shown in the right-aligned plot and the objective of this optimization algorithm is
to optimize the hyperparameter 𝑄 which minimizes these criteria. The left-aligned plot shows the roll
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Fig. 9 Verification of robustness of the Controller Performance to Model Uncertainties based on worst
case model search with genetic algorithm using Multi-Objective Parameter Synthesis (MOPS) (V&V of
requirements S06-RM).

rate tracking performance for different evaluations of the optimization routine. The color of the plots is
mapped to different evaluations as the algorithm searches for the best 𝑄 value to minimize the criteria.

31 32 33 34 35 36 37

-0.02

-0.01

0

0.01

0.02

0.03

0.04

1

0.5

Fig. 10 Verification of robustness of the Controller Performance to Model Uncertainties based on
hyperparameter(𝑄) tuning for the worst-case model using Multi-Objective Parameter Synthesis (MOPS)
(V&V of requirements S06-RM).

An advantage of this model-based clearance of control laws for robustness to model uncertainties is
its applicability to model-free control methods like iADP. This is possible because data can be generated
from various models that incorporate these parametric uncertainties. Another advantage is the ability to
define nonlinear criteria and use a nonlinear model for this process. While this study focused on a limited
set of criteria and hyperparameters, the procedure can be scaled to fine-tune controllers for additional
criteria like rise time and overshoot, and can optimize multiple loops simultaneously. A similar approach
was adopted for iADP longitudinal control, considering the parametric uncertainties for longitudinal
dynamics in table 4, thereby meeting control design requirement S06-RM as outlined in table 1.
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4.2 Flight Test Results
Table 5 provides a summary of the flight test campaigns conducted in November ’22, August ’23,

and December ’23, as part of the iADP-based FCS validation process. It details a concise overview of
the flight trials conducted, including a brief description and the outcome of each trial.

The first successful trial of the iADP algorithm for longitudinal rate control is presented in fig. 11.
The left-aligned plots illustrate the model learning phase, an open-loop period where a 3211 maneuver
is commanded by the elevator. The online RLS algorithm updates model parameters at each time step
during this 20-second phase, with fixed parameters, subsequently passed to the controller training phase.
The choice of the 3211 signal is based on its proven effectiveness in previous system identification flight
tests on the Citation aircraft. The 3211 signal also serves the functionality of a persistently exciting signal.
Results comparing measured longitudinal states against predictions from the RLS algorithm show a good
fit.
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Fig. 11 Flight Test Data(Trial ID : N22-F2-T3), PH-LAB performing a Longitudinal maneuver: iADP Flight
Control Law (FCL) designed for Pitch Rate Capture. Sequential Learning Approach (SLA) with fixed
parameters post model learning and controller training.

The right-aligned plots depict results from the controller training and assessment phase. The
controller training phase lasted for 40 seconds(from 20 to 60 seconds), during which the controller
loop is closed and an automatic pitch rate reference command to evaluate the policy is generated. The
controller along with model parameters estimated from the model learning phase and observed one-step
error in pitch rate tracking, has to improve its estimates of cost-to-go function. Controller parameters are
updated during a brief 5-second phase (55 to 60 seconds). This computationally intensive phase updates
kernel matrix parameters, using data collected over a 20-second window(data from 35-55 seconds is used
for the update from 55th second onwards). After the controller training phase concludes, the parameters
are fixed and passed to the subsequent Controller Assessment phase. During the Controller Assessment
phase, the controller’s objective is to track the reference command. The results, from 60 to 100 seconds,
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Table 5 Overview of the iADP Controller Flight Testing Campaigns. The trials are listed chronologically,
and the trial ID follows the notation: N22 for November 2022, A23 for August 2023, D23 for December
23, F# indicates the flight test day, and T# indicates the trial number. The Axis indicates the actively
controlled channel of the aircraft via the FBW during the trial. 𝑉𝑇𝐴𝑆 represents True Airspeed, and ℎ

represents altitude. The Outcome column reflects whether the controller response aligned with the design
specifications. Config. denotes Aircraft Configuration.

Trial ID Axis 𝑉𝑇𝐴𝑆
[m/s]

ℎ

[m] Brief Description Outcome

N22-F2-T1 Pitch 101 3600 Oscillatory response; Convergence in Model prediction ✓

N22-F2-T2 Pitch 106 3650 Off-nominal Flight; Inverted Incremental Model Parameters ✕

N22-F2-T3 Pitch 104 3650 First Success; Decent tracking; Slight Elevator oscillations ✓

N22-F2-T4 Pitch 105 3550 Inverted Controller Commands; Inverted Model Parameters ✕

N22-F2-T5 Pitch 94 3500 Better tracking; Increased Elevator oscillations ✓

N22-F3-T1 Pitch 102 2100 Decent tracking; High Model Prediction error ✓

N22-F3-T2 Roll 91 2150 Oscillatory response; High Model Prediction error ✕

N22-F3-T3 Roll 96 2000 Aircraft deviated from level flight post Model Learning phase ✕

A23-F1-T1 Pitch 99 2750 Oscillatory response; Model Learning duration too short ✓

A23-F1-T2 Roll 101 2800 Deviated from level flight; Model Learning duration too short ✕

A23-F1-T3 Pitch 102 2750 First success with Continuous Learning; Decent tracking ✓

A23-F1-T4 Pitch 101 2800 Reproducible Continuous Learning; Better tracking ✓

A23-F1-T5 Roll 100 2800 First success in Lateral with Continuous Learning ✓

A23-F1-T6 Roll 101 2800 Reproducible Continuous Learning; Good tracking response ✓

A23-F2-T1 Pitch 97 3050 Stable Continuous Learning; Decent tracking response ✓

A23-F2-T2 Roll 101 3050 Nominal Config.; Reproducible Continuous Learning ✓

A23-F2-T3 Roll 95 3100 Nominal Config.; Reproducible Continuous Learning ✓

A23-F2-T4 Roll 97 3100 Nominal Config.; Reproducible Continuous Learning ✓

A23-F2-T5 Roll 97 3050 Landing Gear Down Config. ; Stable Continuous Learning ✓

A23-F2-T6 Roll 97 3050 Flaps 15◦ Config. ; Stable Continuous Learning ✓

A23-F2-T7 Roll 98 3100 Flaps 40◦ Config. ; Slightly Oscillatory tracking ✓

D23-F1-T1 Roll 95 3050 Nominal Config.; Initial checks ✓

D23-F1-T2 Roll 95 3050 Nominal Config.; Initial checks ✓

D23-F1-T3 Roll 95 3050 Nominal Config.; Reproducible Continuous Learning ✓

D23-F1-T4 Roll 95 3050 Nominal Config.; Reproducible Continuous Learning ✓

D23-F1-T5 Roll 95 3050 Nominal Config.; Reproducible Continuous Learning ✓

D23-F1-T6 Roll 95 3050 Nominal Config.; Reproducible Continuous Learning ✓

D23-F1-T7 Roll 94 3050 Flaps 15◦ Config. ; Stable Continuous Learning ✓

D23-F1-T8 Roll 95 3050 Landing Gear Down Config. ; Stable Continuous Learning ✓

D23-F1-T9 Roll 95 3050 Flaps 40◦ Config. ; Slightly Oscillatory tracking ✓

D23-F1-T10 Roll 95 2800 Active Config. change; N -> GD -> N ✓

D23-F1-T11 Roll 95 2750 Active Config. change; N -> F15◦ -> N ✓

D23-F1-T12 Roll 95 2800 Active Config. change; N -> F15◦ -> F40◦ -> F15◦ -> N ✕

D23-F1-T13 Roll 95 3000 Active Config. change; N -> F15◦ -> N ✓

D23-F1-T14 Roll 95 3020 Active Config. change; N -> F15◦ -> N ✓

D23-F1-T15 Roll 95 3050 Active Config. change; N -> F15◦ -> F40◦ -> F15◦ -> N ✕
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show the aircraft tracking a pitch rate command, which can also be interpreted as a reduction in the
cost-to-go plot.

Figure 12 present the flight test results from trial A23-F2-T2. In this trial, the controller’s objective
is to command the aircraft to follow a roll rate reference and also to demonstrate the capability of stable
continuous learning. Ft and Gt plots illustrate the performance of the incremental model identification
stage throughout the entire maneuver. Given the algorithm’s lack of prior knowledge about the model,
doublets are commanded at the Aileron and Rudder initially to assist the identification process. The first
plot shows reference and measured roll rate output, the second plot shows the roll angle and the third plot
shows the aileron and rudder output commands to achieve the rate tracking task. Comparing reference to
the measure roll rate output, a good tracking response is observed. The bottom plot shows the evolution
of the controller parameters throughout the maneuver, respectively.

Fig. 12 Flight Test Data(Trial ID: A23-F2-T2), PH-LAB performing a Lateral maneuver: Plots show
performance from Controller Training and Assessment Phase. iADP Flight Control Law (FCL) designed for
Roll Rate Capture. Continuous Learning Approach (CLA) with real-time parameter adaptation.

The flight test data presented in fig. 11 and fig. 12 validates that the FCS fulfills the design spec-
ifications outlined in Table 1, namely S01-MT (Minimize Rate Tracking Error), S05-MF (Agnostic to
model), S07-SN(Sensitivity to Noise, Bias & Delays) and S11-CL (Continuous Learning).

To conduct V&V for the control design requirement S07-SN (sensitivity to sensor dynamics and
other hardware effects), a comparison was made to assess the controller’s performance with various
fidelities of aircraft models. This step is crucial for identifying any issues with the flight control software,
interfaces, and the controller’s sensitivity to real hardware and software constraints. Although Hardware-
in-the-Loop (HIL) simulations, as detailed in fig. 3, were planned before the flight tests, the unavailability
of the aircraft model to be interfaced as a DUECA module made this verification step not possible. The
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Fig. 13 Comparison of Controller Performance: Model in the Loop(MIL) vs. Software in the Loop(SIL) vs.
Flight Test(FT) Data considering a Continuous Learning Approach (CLA) (V&V of requirements S01-MT
and S07-SN).

controller’s performance is shown in fig. 13. The data compare the responses across different simulation
fidelities. The plots show similarity in the controller’s response for Model-in-the-Loop (MIL), Software-
in-the-Loop (SIL) simulations, and flight test data.
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Fig. 14 Quantifying similarity index of Adaptive control parameters using Frobenius Norm across Aircraft
Configurations. Tracking error is less sensitive to aircraft configuration changes in Continuous Learning
Approach (CLA). Kernel Matrix Parameters �̃� are correlated to Aircraft Configurations, indicating adapta-
tion of control policy by the Reinforcement Learning agent. State transition matrix parameters(�̃�𝑡 ) from the
Incremental Model are correlated to configurations, high sensitivity to Flaps 40◦ Extension. High variance
in control effectiveness matrix parameters(�̃�𝑡 ) of the Incremental Model. Configuration labels: N-1 (1st trial
in Nominal Configuration), N-2 (2nd trial in Nominal Configuration), G-D (Landing Gear Down), F-15 (Flaps
15◦ Extension), F-40 (Flaps 40◦ Extension). Validation of Controller Adaptability to Aircraft Configurations
based on Flight Test Data (V&V of requirements S02-AC, S05-MF, S11-CL).

To quantify the adaptability of the controller to aircraft configurations (control design requirement
S02-AC), time-evolving parameters are compared against different configurations. Four different metrics
are considered for comparison, Tracking Error: Evaluates controller tracking performance, assessing
the control objective, Incremental Model State Matrix (�̃�𝑡): Measures identified incremental model
parameters related to state transitions, containing state derivatives, Incremental Model Control Effec-
tiveness Matrix (�̃� 𝑡): Measures identified incremental model parameters related to control effectiveness,
containing control derivatives, and Kernel Matrix (�̃�): Measures learned control policy parameters.
The Frobenius norm of the difference in matrices is selected to assess the similarity of these values. For
example, the norm for comparing N-1 configuration data with Flap 15 configuration is defined as follows:
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∥Δ𝑃∥𝐹 = ∥𝑃𝑁1 − 𝑃𝐹15∥𝐹

A cumulative sum of this value serves as a metric indicating the similarity between 𝑃𝑁1 and 𝑃𝐹15
parameters. This similarity measure is depicted for various values and compared across different aircraft
configurations in fig. 14. Comparing the first column of all four plots, i.e., comparing N-1 to {N-2,
G-D, F-15, and F-40}, the difference in the tracking error seems to be minimum between N-1 and
N-2. However, examining the ∥Δ�̃�∥𝐹 plot indicates that the similarity is least between N-1 and F-40,
contrasting with the N-1 and N-2 comparison. This observation suggests that controller parameters
undergo updates to accommodate aircraft configuration alterations. The ∥�̃�𝑡 ∥𝐹 plot indicates the greatest
difference in the state derivative matrix during the F-40 configuration, as expected due to significant
changes in the aircraft’s aerodynamic properties during maximum flap extension.

Fig. 15 Flight Test Data(Trial ID: D23-F1-T11), PH-LAB performing a Lateral maneuver: Plots show
performance from Controller Training and Assessment Phase. iADP Flight Control Law (FCL) designed
for Roll Rate Capture. Continuous Learning Approach (CLA) with real-time parameter adaptation as the
aircraft transitions between configurations: from Nominal Flaps 0◦ Extension to Flaps 15◦ Extension, and
back to the nominal configuration. Validation of Controller Adaptability to Aircraft Configuration Based
on Flight Test Data (V&V of requirements S02-AC, S05-MF, S11-CL).

To further validate the control design requirement (S02-AC), multiple flight trials were conducted
where the aircraft undergoes configuration changes while the controller is learning (refer to table 5).
Flight test data from one of these live configuration change experiments is shown in fig. 15. Around 60
seconds, the flaps were extended from the nominal 0◦ configuration to 15◦ and then back to 0◦ at 100
seconds, while the controller was active and tracking a roll rate command. The configuration change did
not influence the tracking response, and the controller and model parameters are being updated in real
time. While the analysis in fig. 14 considers configuration changes before controller engagement, the
flight trial in fig. 15 involves configuration changes after the controller is engaged and actively updating
its parameters. This validates the control design requirement S02-AC.

To assess the reproducibility of the controller performance, flight test data from different trials from
different aircraft configurations is summarized in fig. 16. There is a high level of similarity in the
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Fig. 16 Validation of reproducibility of the Controller Performance in similar conditions based on Flight
Test Data (V&V of requirements S04-RR). The labels of the flight test ID are listed in table 5

controller performance, as flight test data from same configurations appear to be similar. This validates
the control design requirement S04-RR for reproducible results.

5 Conclusion
The reuse of V&V procedures, originally designed for model based control methods and adapting

them for online adaptive FCL, expedited the clearance of control laws for flight tests. This resulted in
successful maiden flight test, where the controller was able to command, without any prior knowledge of
the aircraft, relying solely on the real-time data collected on the go. While the V&V procedures detailed
in this work are applied for RL-based online adaptive iADP control law, they can be extended to offline
training-based RL controllers or other adaptive FCLs. Furthermore, in future, these V&V procedures can
be adapted to meet control design requirements such as fine-tuning controller performance, disturbance
rejection, direct fault tolerance, and handling qualities using the aforementioned tools, methods, and
framework.

The rapid advancement of Machine Learning-based FCS could potentially outpace current V&V
procedures. It is crucial to define cost-effective, tailored V&V plans for online learning algorithms, to
expedite the development schedules of emerging safety-critical FCS. This research marks a significant
step towards V&V of online learning-based adaptive FCS, and the outcome of this controller design
process, including V&V, could aid in developing and certifying machine learning based controllers.
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