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ABSTRACT

Air traffic trajectory recognition has become an interest in response to the airspace modernization.
Similar to time series data, trajectory can be analyzed using representation learning. However,
research on trajectory is less explored compared to other time series data. This paper introduces
a machine learning-based approach to learning trajectory representations, which enhances per-
formance in downstream recognition tasks. This contrastive representation learning framework is
demonstrated on public unlabeled air traffic surveillance data. Using the contrastive objective, the
model learns to maximize the agreement in representation for similar subseries, defined by the un-
changed track, while distinguishing them from globally sampled negatives. The model uses sliding
window encoding to transform the trajectories into more generalizable semantic terms, resulting
in scalability for incomplete trajectories. The clusterability of the embeddings was compared with
the clustering of the corresponding raw trajectories. The results suggest that analysis using the
learned representation generates more elaborative clusters from a comprehensive point of view for
both arrival and departure air traffic data.

Keywords: Contrastive Learning; Air Traffic Management; Representation Learning; Time Series Analysis; Tra-
jectory Clustering

Nomenclature

𝐷 = Discriminator function
Enc = Encoder function
𝐸, 𝐸′ = Number of features, Encoding size
[ = Size of reference sub-eries
𝑁 = Number of samples
𝑝 = p-value
𝑟, \ = Polar positional components (radius, bearing)
𝑆, 𝑆′ = Number of measurements (Number of timestamp), Encoding length
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𝑡 = Timestamp
𝑡𝑝, 𝑡𝑛 = Centroid of sub series (Positive, Negative)
𝑢𝑥 , 𝑢𝑦, 𝑢𝑧 = Directional cosine vector components
𝑤 = Encoding window size
𝑥, 𝑦, 𝑧 = Cartesian positional components in ENU coordinates
𝑋 = Trajectory array
𝑥𝑡 , 𝑥𝑝, 𝑥𝑛, 𝑥𝑟𝑒 𝑓 = Subseries (Anchor, Positive, Negative, Reference)
𝑧 = Encoded subseries
𝑧𝑡 , 𝑧𝑝, 𝑧𝑛 = Encoded sub series (Anchor, Positive, Negative)
𝑍 = Encoded trajectory array
𝛿 = Sliding gap
`, 𝜎 = Mean, Standard deviation

1 Introduction
Trajectory-based operations (TBO) have become interested in airspace modernization to enhance

the safety and capability of the strategic air traffic flow management system. The autonomous operation
has been developed to flexibly manage large high-dimensional trajectory data. As a part of the system,
air traffic trajectory recognition has been a topic of interest in the air traffic management community,
especially for a metropolitan airport with a high-density traffic flow and complex air traffic pattern.
Although flight procedures exists as the designated flight pattern published by the authority, the air traffic
controller may assign direct instruction or advice on the deviation from the standard courses, causing
a challenge to identify the non-standard trajectories. The artificial intelligence model has successfully
extracted useful information from the time series to learn the pattern.

Nowadays, a massive amount of aircraft trajectory data can be obtained from a publicly available data
source, such as the collected Automatic Dependent Surveillance–Broadcast (ADS-B) signal recorded by
surveillance facilities. The publicly available ADS-B data contain the information on aircraft’s identifi-
cations, positions, velocities, headings, and the time of broadcasting, and the data can be reorganized and
preprocessed into the time-series of positional information, the trajectory of a specific aircraft; however,
the data are usually unlabeled. Therefore, to characterize the information from the massive amount of
unlabeled trajectory data, various clustering algorithms have been widely applied to provide groups of
similar trajectories.

The trajectories as time series are usually rich in information, complex, and highly dimensional;
transforming them into a more generalizable representation can enhance the performance of downstream
tasks such as classification and clustering. Unsupervised contrastive representation learning is successful
in many applications, yet contrastive learning on time series data was less popular than vision and natural
language processing. Although many real-world time series, such as sound waves, electromagnetic sig-
nals, medical signals, human activity data, etc., have been demonstrated in recent works, the trajectory
data of moving vehicles still needs to be explored. This paper proposes an unsupervised contrastive
representation learning model for air traffic trajectory data, exploiting the nature of air traffic trajecto-
ries. The proposed technique uses contrastive learning that aims to pull together, in the feature space,
the representations of the sub-trajectories within the determinable time boundary and push away the
representations of the sub-trajectories outside this region. Using the unlabeled data, the paper further
demonstrates the clusterability of the embeddings compared to the raw trajectory data to show that im-
plementing downstream clustering tasks on the embeddings provides separability among the ambiguous
clusters.
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2 Related Works
Earlier works on learning-based trajectory representation predominantly use autoencoder architec-

ture. The autoencoder architecture consists of the encoder attached to the decoder, and they are trained
simultaneously to reconstruct the original inputs. In this manner, the learned representation usually
refers to the meaningful latent space between the encoder and decoder. Prior works [1, 2] utilized the
autoencoder architectures for trajectory feature learning to reduce the computational burden in trajectory
clustering by compressing the information in trajectories into meaningful latent space. The trajectory
variational autoencoder (TrajVAE) has been proposed for a more complex model in [3]. Although the
VAE is built mainly for trajectory generation, the architecture extracts meaningful information from the
original trajectory. By applying the masking strategy in Traj-MAE [4], the masked autoencoder can be
utilized to predict future trajectory state, which is beneficial for collision prediction of vehicles. The deep
trajectory clustering in [5] does not incorporate only the reconstruction loss function for trajectory feature
learning but also enforced the clustering loss to ensure the separation of the latent space representation.

The goal of cntrastive learning is to perform optimization in the embedding space such that the
embedding of similar samples from the positive set is put together in the feature space closer to the
anchor sample. In contrast, embeddings of dissimilar samples from the negative set are pushed away
from the anchor and positive set [6–8]. In this manner, contrastive learning has been recognized as a
powerful self-supervised learning technique, especially for vision [8–11], and natural language processing
[12–14]. On the other hand, time series were less studied and even less on the trajectories of moving
objects compared to other types of time series signals.

Contrastive learning has become popular in representation learning because the time series are often
highly oscillated or too complex to be reconstructed. Therefore, the more complex the time series, the
more challenging it is to fit the autoencoder, and the learned latent space could underrepresent the original
time series. Contrastive Predictive Coding (CPC) [15] maximizes the mutual information between the
encoded representation of subseries using InfoNCE loss. The technique attaches an autoregressive model
to the encoder. It maximizes the agreement between the future subseries’ latent space and the prediction
of them using the information encoded from the previous subseries. The work in [16] demonstrates
the Unsupervised Scalable Representation Learning that applies to the set of time series with unequal
length. The positive samples are selected randomly within the reference region using uniformly random
distribution while letting the negative be the subseries outside the interested series. The encoder is trained
with the time-based triplet loss, ensuring the similarity of positive subseries and distinguishability from
negative subseries. Temporal neighborhood coding (TNC) [17] determines the positive region within a
sample by exploiting the local stationarity of the time series. The positive and negative sets are defined
within a series without accessing others. The TNC framework was built with the encoder and the
discriminator; they are trained simultaneously by encouraging the discriminator output to be the same for
the positive and oppositely for the negative sets. The TNC loss applies a debias parameter to ensure the
encoder’s contrastive learning objective using the discriminator’s decision. Some literature augments the
raw input data to obtain different data with identical contexts. Representation learning via Temporal and
Contextual Contrasting (TS-TCC) [18] is one of many successful works. This method demonstrated the
weak and strong augmentation of the original time series. It maximizes the similarity between these two
augmentations while distinguishing them from all other series. The Bilinear Temporal-Spectral Fusion
(BTSF) [19] demonstration shows that dropout can be used as an augmentation process. Moreover, the
work considered the spectral domain of time series by combining the encoded product of time and the
spectral domain into the bilinear feature map; hence, it was successful for medical signals. This paper
proposes a contrasting representation of learning for air traffic trajectory as they are rarely explored in
prior literature.
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3 Methodology
This paper proposes an unsupervised contrastive representation learning technique for the aircraft

trajectory data within the airport terminal area. The methods are explained in detail in the section. The
implementation includes aircraft trajectory dataset preparation, the model training pipeline construction,
and the experiments.

3.1 Dataset Preparation
The experiments in this paper were done using the publicly available historical Automatic Dependent

Surveillance–Broadcast (ADS-B) data recorded in the OpenSky database [20], considering the area
within 150 kilometers circumstancing the Incheon international airport (ICAO airport code: RKSI).
The trajectory data in this paper was recorded between 2018 and 2023. Since the Incheon International
Airport shares some operational fixes with the Gimpo International Airport, the trajectories not belonging
to the arrival and departure of the Incheon International Airport were filtered out. Besides, trajectories
that are too short, too long, and incomplete were filtered out to clean the data.

The important tracking information in an ADS-B state vector includes broadcasting time, icao24
code, latitude, longitude, velocity, heading, vertical speed, call sign, on-ground indication, barometric
altitude, geometric altitude, etc. The barometric altitude was selected as a vertical position state as
it is published in the Aeronautical Information Publications (AIPs) for the aircraft operator to comply.
Therefore, the latitude, longitude, and barometric altitude were transformed into the Cartesian position
𝑥, 𝑦, and 𝑧 in the ENU (East-North-Up) coordinates, the local tangent plane coordinates, centered at the
Incheon International Airport. Since the ADS-B state vector may not be recorded in consistent time
interval, the trajectory data were resampled and interpolated to fill in the missing data points. Then,
the outlier states were removed, and the Savitzky-Golay filter was applied to smooth the trajectory data.
Finally, the filtered trajectories were unified in step length by linear interpolation.

After obtaining the Cartesian position in 𝑥, 𝑦, and 𝑧 stacked along the time steps, 𝑡, the heading and
flight path are also valuable features that describe the shape of the trajectory. Moreover, when an aircraft
maintains the course, it conducts a particular assigned procedure; the positional states within this period
are parts of the procedural track. The directional cosine vectors were calculated for each consecutive
position to describe the heading and the flight path angle. The directional vector is a vital element for the
proposed method in this paper, as it will exploit the unchanged angles to determine similar samples for
the learning model. Furthermore, to make the input features more expressive, the cylindrical coordinates
are sometimes preferred for air-traffic management; therefore, the lateral radius, 𝑟, and bearing angle, \,
were calculated for each lateral points 𝑥, and 𝑦 in the trajectories. These features provide the context of
how far the aircraft is from the airport and which angular sector it is located. The dataset was normalized
within [−1, 1] using the max-absolute scaler.

The trajectory data for Incheon International Airport is generally imbalanced because both arrival and
departure flights are densely distributed in the south and southeast of the airport. With this characteristic,
the undersampling was done on the southbound and southeastbound trajectories, creating a balanced
dataset of trajectories bound from the west, northeast, southeast, and south of the airport. Each arrival and
departure flight data consists of a 5000-time series of aircraft trajectory states without labels, partitioned
into 2,500 training samples and 2,500 clusterability testing samples. Each sample has 1000 measurements
with eight features, including three directional features from the directional cosine vector of the flight
path 𝑢𝑥 , 𝑢𝑦, 𝑢𝑧, and five positional features from three Cartesian elements 𝑥, 𝑦, 𝑧 and cylindrical elements,
𝑟, and \. A separate raw trajectory dataset was prepared for comparative clustering. This dataset contains
the original Cartesian positions in 𝑥, 𝑦, and 𝑧 and consists of 1,000 measurements.
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3.2 Training Pipeline
This paper introduces the method for contrastive representation learning, exploiting the behavior of

air-traffic trajectories. With this setting, it is crucial to set the boundary of sampling in such a way that
the positive samples are similar and distinguishable from the negative samples. For 𝑁 samples of time
series, let a multivariate time series denoted as 𝑋 having a dimension of 𝐸 × 𝑆, while 𝐸 is denoted as the
number of features and 𝑆 is the sequence length. Pre-encoded subseries are denoted as 𝑥 centering at the
sampled time 𝑡 ∈ [𝑤2 , 𝑆 − 𝑤

2 ], comprise the states in the time window [𝑡 − 𝑤
2 , 𝑡 +

𝑤
2 ].

The statistical tests have been proven to be an efficient method to set the boundary of the region of
positive reference for time series [17]. As the sampling procedure in this paper exploits the unchanged
direction during aircraft flying, the distribution in the directional features should have a constant trend with
low variance within a window. Therefore, the statistical tests can be applied to test whether the distribution
of the anchor time window 𝑥𝑡 and the region of reference 𝑥𝑟𝑒 𝑓 are indifferently normally distributed. The
framework employs the two-sample t-test for means and two-sample Levene’s test for variances. To test
the indifference in means and variances, the null hypotheses in testing are 𝐻𝑜,𝑡−𝑡𝑒𝑠𝑡 : `𝑡 = `𝑟𝑒 𝑓 , and
𝐻𝑜,𝐿𝑒𝑣𝑒𝑛𝑒 : 𝜎2

𝑡 = 𝜎2
𝑟𝑒 𝑓

). To combine the p-values from two statistical tests, Fisher’s method was applied
to calculate 𝑝𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = 1 − 𝐹 (−2 (ln(𝑝t-test) + ln(𝑝levene)) ; 4). The centering time 𝑡 is first sampled for
a trajectory sample 𝑋𝑖, 𝑖 ∈ [1, 𝑁], creating an anchor subseries 𝑥𝑡 of window size 𝑤.

To construct the positive set, the region of reference 𝑥𝑟𝑒 𝑓 is repeatedly tested by the combined test;
in each test, the size of 𝑥𝑟𝑒 𝑓 increases until the test returns the p-value, indicating the difference in two
distributions. The maximum size of the reference region is denoted as [. The assumption was made
similarly to [17] in which the signals closer to the anchor subseries in time are more similar to the centroid.
For this assumption, the positive sampling modeled by Gaussian distribution was applied. The centroid
of positive samples has Gaussian distribution 𝑡𝑝 ∼ N(𝑡, [), and the positive subseries 𝑥𝑝 comprise the
states in the time windows [𝑡𝑝 − 𝑤

2 , 𝑡𝑝 +
𝑤
2 ].

On the other hand, another assumption was made for negative samples that the context of positive
does not exist in different time series samples, even though there might be some, similar to the negative-
sampling word-embedding method [16, 21]. Thus, the negative subseries are randomly selected from
other trajectories. Two uniform distributions are applied. First, the candidate trajectories were randomly
selected from the dataset 𝑋 , excluding 𝑋𝑖 denoted as the subset 𝑋 \ {𝑋𝑖} by allowing duplicates to
be sampled. Then, the time centriods of negative set 𝑡𝑛 are sampled from the uniform distribution
𝑡𝑛 ∼ 𝑈 ( 𝑤2 , 𝑆 − 𝑤

2 ). Note that both candidate trajectories sampling and negative centroids sampling were
conducted using the same sample size. The negative set can now be constructed by matching the candidate
trajectories to the centroids; as the results, 𝑥𝑛 comprise the states in the time windows [𝑡𝑛 − 𝑤

2 , 𝑡𝑛 +
𝑤
2 ] of

the time series 𝑋 𝑗 ∈ 𝑋 \ {𝑋𝑖},while 𝑖, 𝑗 ∈ [1, 𝑁]. Fig 1 visualizes the positive and negative sampling.

The representation, 𝑧 of any subseries 𝑥, are obtained from the differentiable encoder model;
𝑧 = Enc(𝑥). The anchor, positive, and negative subseries representations are denoted as 𝑧𝑡 , 𝑧𝑝, and 𝑧𝑛,
respectively. The framework utilized the Transformer encoder model presented in [22]. In the encoder’s
architecture, the linear projection layer expands the feature dimensions of subseries 𝑥 for more expres-
siveness; then, the class token 𝑐 as learnable parameters are appended as the first-time element. After
passing the inputs to the transformer encoder, the class token is extracted and mapped to the encoding size
𝐸′ as the representation 𝑧. The architecture of the Transformer encoder used in this paper is illustrated
in Fig 2. According to the assumption of the negative sampling method stated that some samples in the
negative set are the positive samples; to encourage the similarity of 𝑧𝑡 and 𝑧𝑝, and distinguishability of
𝑧𝑡 and 𝑧𝑛, the TNC loss [17] were implemented, for it has been proven to be robust for bias sampling
in the Positive-Unlabeled (PU) learning. The original TNC loss function was modified according to the
sampling procedures, and the loss function used in this framework is expressed in equation (1). The 𝑤

parameter represents the probability of having positive samples in the negative set.
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Fig. 1 Sampling visualization for 𝑥𝑟𝑒 𝑓 , 𝑥𝑝, and 𝑥𝑛

Fig. 2 Architecture of Transformer Encoder used in trajectory representation learning

L = −E𝑥𝑡∼𝑋
[
E𝑥𝑝∼𝑥𝑟𝑒 𝑓

[
log 𝐷 (𝑧𝑡 , 𝑧𝑝)

]
+ E𝑥𝑛∼𝑋 𝑗∈𝑋\{𝑋𝑖} [(1 − 𝑤) log(1 − 𝐷 (𝑧𝑡 , 𝑧𝑛)) + 𝑤 log 𝐷 (𝑧𝑡 , 𝑧𝑛)]

]
(1)

A Discriminator is employed to approximate the probability of a representation, 𝑧 is the same as
the anchor representation 𝑧𝑡 ; the sigmoid output of the discriminator is denoted as 𝐷 (𝑧𝑡 , 𝑧). For the
architecture, the discriminator in this framework is a simple multi-headed binary classifier that returns 1
when 𝑧𝑡 and 𝑧 are the same and returns 0 when 𝑧𝑡 and 𝑧 are different. The encoder and the discriminator
jointly learn to optimize the loss function in equation 1 using the newly sampled anchor sample 𝑥𝑡 positive
samples 𝑥𝑝, and negative samples 𝑥𝑛 in each training epoch. After the training, the discriminator will not
be used; only the encoder will be used to transform the original subtrajectory into representation.

For this paper’s trajectory data, the window size was set at 𝑤 = 20 measurements; the linear
projection layer expands eight features to the dimension of 64. The transformer encoder has three layers;
each consists of single head attention and 256 units in the feed-forward layer with 0.1 drop rate. The
token mapping layer transforms 64 elements of the token into the encoding size of 32. There are five
revisiting times for training for a single time series sample. Since the trajectory data significantly rely on
in-batch negatives, the sampling size for both positive and negative sets is 1000 samples.
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3.3 Experiments
Contrastive representation learning typically aims to obtain a better performance on the downstream

tasks, generally referring to classification and clustering. However, since the experimental dataset is
unlabeled, the analysis of representation learning performance was done by testing the clusterability of
the encoded data. According to the framework architecture, the encoder transforms the sub-trajectories
into representation vectors; the whole trajectory can be encoded using sliding windows. For the time
𝑡 ∈ [𝑤2 , 𝑆 − 𝑤

2 ] with adjustable sliding gaps 𝛿. The encoded trajectories have the dimension of 𝐸′ × 𝑆′,
while 𝐸′ is adjustable encoding size, and 𝑆′ is encoding length following equation (2). For example, the
experiment throughout this paper set the sliding gap at 𝛿 = 5; the encoding length, 𝑆′ = 200.

𝑆′ =

⌊ (𝑆 − 𝑤
2 ) −

𝑤
2

𝛿

⌋
+ 1 + 2

( 𝑤

2 × 𝛿

)
(2)

The clustering experiment compared the clusterability between the raw trajectories and encoded data.
The Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN) [23] was
selected in this experiment, for it can identify clusters of various shapes and densities without requiring
the number of clusters to be specified. Moreover, unlike DBSCAN, which requires the epsilon parameter
to specify the radius of the neighborhood around each sample, HDBSCAN does not require such a
parameter to be set as such radius is automatically determined. The distance metric between two samples
in HDBSCAN is measured using Dynamic Time Warping (DTW) [24]. The DTW was employed for
both since raw 3-dimensional trajectory data and encoded trajectories have temporal dynamics. Unlike
point-to-point Euclidean distance, DTW uses dynamic programming to approximate the best-aligned
point pairing to calculate the distance between two temporal sequences. After obtaining the cluster
assignments, the Silhouette scores were calculated for every cluster the HDBSCAN algorithm can group.
The higher scores indicate that the object is well-matched with its cluster and poorly matched to the
neighboring cluster. The clustering results were visualized using t-SNE, which produced 2-dimensional
scatter plots to illustrate the groupings of similar samples, along with grouped trajectories plots for
comprehensible view. The framework was implemented using Python 3.11 and Pytorch 2.0.1, trained on
a machine with NVIDIA GeForce RTX 4090 GPU. The testing data analysis was done with benchmarking
and comprehensive plotting of the clusters.

4 Results and Discussion
This section elaborates on the encoded trajectories’ characteristics, supported by illustrative exam-

ples. It then presents the clusterability results of the encoded trajectories with the experiment setting
discussed in the previous section. Further discussion and analysis of these results are also provided.

4.1 Encoded Trajectory
With the window size 𝑤 = 20 and sliding gap 𝛿 = 5, the encoded trajectories 𝑍 are two-dimensional

arrays, having the extent of 200 × 32. Sliding through the windows of 𝑥𝑡 over the time step, each
column with 32 elements is the embedded 𝑧𝑡 , representing a sliding window 𝑥𝑡 with the size of 20 × 8.
All trajectories were encoded and standardized and stored for use in the clustering experiment. As
illustrated in Fig 3, the embeddings capture the states within each sliding window. In a broader context,
these embeddings collectively represent the temporal dynamics of the entire trajectory. A smaller
sliding gap can also capture the transition when the aircraft changes its course, thereby providing a
better representation of the trajectory’s continuous nature; consequently, it takes a longer inference
time for encoding. As illustrated in Figure 3, the encoded representations of eastbound and westbound
trajectories show distinct patterns. Moreover, the embeddings during the landing phase on different
runways are clearly distinct. Local positive sampling encourages the agreement within the reference
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(a)

(b)

Fig. 3 Example Trajectory Plots with Trajectory states and Encoded Trajectory. (a) shows the eastbound
trajectory, and (b) shows the westbound trajectory.

part of individual trajectories. On the other hand, global negative sampling increases the dissimilarity
between representations across different trajectories, resulting in the unique representation of patterns
regardless of their physical closeness.

4.2 Clusterability
The clusterability experiment was conducted on both raw trajectory and encoded trajectory, as well as

departure and arrival scenarios. The raw 3-dimensional trajectory dataset contains 1000 measurements,
the same size as the trajectory states dataset; however, to reduce the computational time for the DTW
distance calculation, the raw trajectory was downsampled to 250 measurements while retaining most
of the vital information. The results obtained using HDBSCAN with Dynamic Time Warping (DTW)
distance are as follows: 2-dimensional t-SNE visualization of clusters, individual plots for separated
trajectories, and the average silhouette score for each group.

4.2.1 Arrival data analysis
Refers to Appendix A.1, Table 1 shows the Silhouette scores for arrival trajectories analysis. Com-

prehensive visualizations, including t-SNE and individual cluster trajectory plots, are presented in Fig.
4. The raw trajectories effectively separate the trajectories that are different in early approach patterns.
For example, as evident in the clusters pair 6-7 and 9-10, the trajectories in each pair have different
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entry points and later have a similar pattern; they are separated into two clusters. Nevertheless, using
raw trajectories poorly differentiates the landed runways. This is because, in the Euclidean space, the
distance between runways is closer than between entry points. In contrast, as seen in Fig. 4c and Fig. 4a,
HBDSCAN clustering using the encoded data provides more apparent separations. In these separated
clusters, the clusters pair 1-2, 7-11, 9-10, and 12-13 obtained by the encoded data represent the distinctly
situated runways for the reason that in the latent space, the representation does not represent the phys-
ical position; however, they represent the piece of information setting apart from their negatives. The
clustering on the encoded data effectively separates the overlapping clusters. The lower Silhouette scores
for the encoded data could be the results from the global negative sampling that encourage the model to
distinguish, from the anchor sample, the positive samples within the negative set. This technique may
cause some trajectories to be outliers, even if they could be considered a cluster member.

4.2.2 Departure data analysis
Using the same metrics as the arrival trajectories, in Appendix A.2, the Silhouette scores for

departure trajectory analysis are presented in Table 2, while Fig. 5 provides the t-SNE visualization
and separately plots the trajectories grouped in the clusters. According to Fig. 5c and Fig. 5a, the
using encoded trajectory performs more effectively on clustering, observable from a better clusters
separation in t-SNE space comparing the t-SNE representation of the raw trajectory. This is because,
with enough generalization ability, contrastive learning can group similar trajectories, although some
subseries identical to them are sampled in the negative set. HDBSCAN generated 8 clusters for the raw
departure trajectory data, and the algorithm does not separate the cluster of distinct runways due to the
mentioned characteristic of raw trajectories in Euclidean space. Although the parameter of minimum
samples per cluster can be adjusted lower to obtain the fine-grained group, the number of samples
considered as noise consequently increase. On the other hand, HDBSCAN generates more detailed
clusters on the encoded data. In addition, the algorithm can recognize detailed departure patterns, for
it can differentiate almost all patterns available in the dataset with few noise samples. Similar to the
clustering on the encoded arrival data, the clusters of trajectories departed on different runways are well
clustered for the same separability advantage as this occurred for the arrival dataset. The results in the
comprehensive view for encoded data are visually better than those using raw trajectories, even though
the Silhouette scores are lower. Same as the results from arrival data, the data groups together in t-SNE
space, but it might be internally distant measured by DTW.

4.3 Discussion
Both analyses suggest that using the encoded trajectory data for downstream clustering tasks results in

more fine-grained groups because the contrastive representation learning encourages the local neighboring
subseries similarity and ensures distinction from the global negatives. The encoder was trained to set
apart the subseries close to Euclidean space to be distant in feature space. Thus, encoding the trajectory
into a representation transforms the raw trajectory into a semantic view, eliminating conflicts or biases
from directly using distance measures on time-series features of different scales and allowing points that
are physically close but operationally different to be distinguishable in the feature space. As a result,
the HDBSCAN on the encoded data can differentiate the points close together in physical space such
as runways. However, the Silhouette scores are lower for experiments on encoded data than those on
raw trajectories. Global negative sampling might be responsible for this issue because the optimization
also sets apart the positive samples within the negative set. To solve this problem further, fine-tuning for
the loss function’s weight parameter and model architecture search should be performed. Moreover, the
results in this paper also rely on the performance of the clustering algorithm; therefore, fine-tuning the
hyperparameters or changing the clustering algorithm could output differently. As the results of departure
data and arrival data reflect different behaviors, experimenting on other datasets could provide additional
insights into the adaptability and generalizability of the method proposed in this paper.
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5 Conclusion
This paper aims to construct a contrastive learning model specifically for trajectory data to facilitate

downstream tasks like classification and clustering. The experimental data in this paper is collected
from a publicly available ADS-B data source. The unlabeled dataset consists of arrival and departure
trajectories circumstancing the Incheon International Airport. The learning framework applied statistical
t-tests and Levene’s test to the directional features to test the identical distribution along the aircraft’s
track and determine the region of the unchanged flight path. The model was trained to encourage the
similarity along the positive reference time and ensure its distinction from the globally sampled negatives.
The model transforms the trajectory into a sequence of feature representations, enabling the downstream
algorithm to analyze the data samples semantically. In addition, the model’s encoding process utilizes
sliding windows applicable to trajectories of varying lengths or incomplete by converting them into shorter
sequences that can be evaluated using DTW or other time series distances. The lower Silhouette scores
are evidence of setting apart the positive samples, resulting in a more considerable distance. However,
the results on HDBSCAN show more clusters in well-separated visualization on the encoded testing
data, emphasizing the distinguishability and familiarization of the trained encoder, further reflecting
that the stationarity of the path direction can be used as the local context for trajectory data. In future
works, the fine-tuning of hyperparameters and the architecture search could be performed to obtain better
results. Other clustering performance indices, such as the Davies-Bouldin score (DBI) or the Adjusted
Rand score (ARI) with labels, can also be measured to confirm the results better. Finding the most
appropriate algorithm could be challenging because the results are sensitive to the clustering algorithm.
Furthermore, since the method in this paper determines the reference period from single time series
samples, testing positivity across the samples is recommended for future works. The authors present this
method as a preliminary step to encourage further studies on various trajectory datasets, learning models,
and architectures to demonstrate further the versatility and broad applicability of contrastive learning for
trajectory representation.
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Appendix

A.1 Experimental Results: Arrival Traffic Data

Table 1 Cluster Silhouette Scores for Arrival Trajectories: Raw and Encoded

(a) Arrival Raw Trajectories

Metric Silhouette Score
Overall Score 0.5846

No Noise Score 0.6311
Noise Samples 102

Cluster -1 -0.5086
Cluster 0 0.7588
Cluster 1 0.7172
Cluster 2 0.7495
Cluster 3 0.5667
Cluster 4 0.6721
Cluster 5 0.6582
Cluster 6 0.5712
Cluster 7 0.5925
Cluster 8 0.5529
Cluster 9 0.6745

(b) Arrival Encoded Trajectories

Metric Silhouette Score
Overall Score 0.1680

No Noise Score 0.2084
Noise Samples 229

Cluster -1 -0.2329
Cluster 0 0.2376
Cluster 1 0.2319
Cluster 2 0.2137
Cluster 3 0.2325
Cluster 4 0.1412
Cluster 5 0.2430
Cluster 6 0.1879
Cluster 7 0.2789
Cluster 8 0.2968
Cluster 9 0.2174
Cluster 10 0.1689
Cluster 11 0.1613
Cluster 12 0.3010
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(a) (b)

(c) (d)

Fig. 4 Comprehensive Visualization of Trajectory Clustering: (a) t-SNE plot illustrating the clusters
separation of raw trajectories, (b) Individual clustering of raw trajectories, (c) t-SNE plot illustrating the
clusters separation of encoded trajectories, and (d) Individual clustering of encoded trajectories.
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A.2 Experimental Results: Departure Traffic Data

Table 2 Cluster Silhouette Scores for Departure Trajectories: Raw and Encoded

(a) Departure Raw Trajectories

Metric Silhouette Score
Overall Score 0.5927

No Noise Score 0.5985
Noise Samples 11

Cluster -1 -0.7041
Cluster 0 0.7628
Cluster 1 0.4533
Cluster 2 0.6040
Cluster 3 0.7285
Cluster 4 0.5460
Cluster 5 0.9148
Cluster 6 0.4432
Cluster 7 0.4962

(b) Departure Encoded Trajectories

Metric Silhouette Score
Overall Score 0.2073

No Noise Score 0.2123
Noise Samples 27

Cluster -1 -0.2550
Cluster 0 0.2968
Cluster 1 0.4028
Cluster 2 0.1706
Cluster 3 0.2290
Cluster 4 0.3770
Cluster 5 0.3373
Cluster 6 0.1408
Cluster 7 0.3608
Cluster 8 0.4113
Cluster 9 0.3277
Cluster 10 0.4423
Cluster 11 0.1448
Cluster 12 0.1622
Cluster 13 0.1817
Cluster 14 0.1114
Cluster 15 0.1346
Cluster 16 0.1877
Cluster 17 0.3355
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(a) (b)

(c) (d)

Fig. 5 Comprehensive Visualization of Trajectory Clustering for Departures: (a) t-SNE plot illustrating
the clusters separation of raw departure trajectories, (b) Individual clustering of raw departure trajectories,
(c) t-SNE plot illustrating the clusters separation of encoded departure trajectories, and (d) Individual
clustering of encoded departure trajectories.
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