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ABSTRACT

In the strive for always more safe and autonomous operations for civil aviation the landing phase
remains by far the most challenging. Robustifying the already existing automatic landing system,
classically based on external infrastructure, with vision-based solutions have recently demonstrated
promising perspectives. Nonetheless, the design and validation of such novel algorithms comes at
enormous costs and logistic effort for installation, in-flight data collection and testing. This paper
introduces a novel Pose-Based Visual Servoing (PBVS) approach for autonomous landing. The
proposed method separates the guidance laws from the image flow processing to leverage already
certified autopilots. Through computer vision algorithms, a vision-aided Extended Kalman Filter
(EKF) receives visual measurements, based on the knowledge of geographical coordinates of some
objects of interest, enabling the estimation of the aircraft’s pose with respect to a designated
runway. The control framework is implemented for a detailed Boeing 747 model on a real-time
simulation platform, which accurately replicates various weather and visual conditions worldwide.
The feasibility and performance of the control strategy are evaluated through numerous landings
at Toulouse airport, encompassing a range of initial and flight conditions.

Keywords: Autonomous vehicles, Computer Vision (CV), Image Processing Algorithms (IPA), Multisensor Data
Fusion (MDF), Adaptive Extended Kalman Filtering (AEKF)

1 Introduction
Automatic landing represents an advantageous solution for reducing pilot workload and address-

ing challenging operational conditions, such as crosswinds or limited visibility. This is why Airbus
is committed to developing new solutions to further enhance the capabilities of autonomous land-
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ing, including technologies like the Satellite Based Augmentation System (SBAS) [1]. The intro-
duction of new solutions enhancing performances is primarily motivated by improving the safety.

Fig. 1 Ten years moving average fatal accident rate
(per million flights) per A/C generation. (Source: Air-
bus - https://accidentstats.airbus.com)

As depicted in Fig. 1, the average fatal accident rate
has demonstrated a decline with the introduction of
new aircraft (A/C) generations. The initial genera-
tion was constrained by analog electronic systems
prevalent during that period. The second genera-
tion saw advancements in autoflight and autothrot-
tle systems, resulting in an immediate halving of
the average fatal accident rate. The third genera-
tion introduced digital technologies, incorporating
Flight Management Systems (FMS) and Naviga-
tion Displays (ND) that enhanced navigation capa-
bilities and positioning awareness. The integration
of terrain awareness and warning systems further
contributed to a reduction in controlled flight into
terrain accidents. The latest generation, inaugu-
rated with the Airbus A320 model in 1988, introduced electrical flight control systems, commonly
referred to as Fly-By-Wire (FBW). These technological leaps provided new means of safeguarding the
aircraft’s flight envelope and enhancing the performance and robustness of the Guidance, Navigation, and
Control (GNC) systems, thereby mitigating the risk of in-flight loss of control accidents [2]. As a result,
the 10-year moving average of the fatal accident rate for the fourth aircraft generation has plummeted to
0.05 in 2022, signifying that approximately 20 million flights must be completed to observe a single fatal
accident occurrence.
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Fig. 2 Illustration of principal visual-based control strategies

Among the different flying phases of an A/C, the landing remains the most challenging one. Recent
studies have focused on finding new robust approaches to either assist pilots or safely and autonomously
land a fixed wing A/C. Beyond currently employed technologies such as Instrument Landing System
(ILS) and Ground-Based Augmentation landing System (GBAS), different alternative systems based on
on-board exteroceptive sensors are being designed and tested to expand autonomous landing capabilities
to runways that lack equipped infrastructure. Working towards this end, embeddable vision sensors
have emerged as a natural and affordable technological solution capable of providing new extra and
dissimilar information for aircraft pose estimation relative to the ground. Visual servoing consists in
using a vision sensor and computer vision algorithms in order to control the motion of the system [3].
Two control strategies can be distinguished, the Pose Based Visual Servoing (PBVS) and the Image
Based Visual Servoing (IBVS). The principles of IBVS and PBVS are presented in Fig. 2 and extensively
explained in references [3, 4]. In IBVS, the guidance objectives are directly formulated in the image
plane, whereas in PBVS, vision serves as a means to estimate the vehicle’s pose w.r.t the desired target,
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and the image processing is separated from the control law. Remarkably, in the case of IBVS, knowledge
of the aircraft’s pose is not required. This characteristic confers a high level of robustness upon 2D
visual servoing, particularly in relation to camera calibration. During the approach and landing phases
of an A/C, Fig. 2a exemplifies the guidance objectives. The current image perception (b) must match
the desired image feature (a), wherein the destination runway should be centered and exhibit symmetry.
Although robust, IBVS solutions suffer however from a well-known problem: the generation of unsuitable
and even singular 3D trajectories. To address this issue, it becomes necessary to separate the translation
and rotation movements. Several techniques have been explored in the literature [5, 6]. Moreover,
constrained IBVS approaches were also developed to guarantee that the visual primitive(s) or the target
object(s) always remain observable i.e. inside camera Field Of Views (FOVs) [7, 8]. Other IBVS
approaches focus on directly regulating the dynamics of visual information within the image, rather than
the dynamics of the system itself. These methods are referred to as d2D/dt visual servoing. These
approaches effectively address the absence of velocity measurements and do not focus on specific visual
primitives or target objects within the image. Instead, they rely on optical flow data to control both
the system’s speed and its distance to the surrounding environment [9, 10]. For fixed-wing aircraft
landing, nonlinear IBVS control strategies have been designed based on line primitives and proposed in
several bibliographical references [11–15]. Serra et al. [15] introduced a robust nonlinear image-based
controller designed for the flare phase of the landing maneuver. This controller is capable of handling
wind disturbances by employing normalized Plücker coordinates to align the 2D line features of the
runway edges in the image, thereby ensuring proper alignment of the A/C with the runway. Similarly,
Coutard et al. [16] and Gibert and Puyou [17] addressed fixed-wing aircraft landing by designing IBVS
controllers whose input signals correspond to both destination runway center-line and touchdown point
coordinates. In comparison to the work presented in [16], [17] examines and verifies a novel set of visual
features to address coupling and nonlinear effects, resulting in an overall improvement of performance
of the IBVS control scheme. While IBVS schemes exhibit attractive robustness, implementing them
for autonomous landing of large transport civil jet A/C necessitates the creation of an entirely new
guidance law structure. This may pose a significant challenge in terms of certification by regulatory
authorities, given the innovative nature of the approach. Moreover, IBVS solutions cause extra costs
and maintenance efforts. For these reasons, the utilization of already certified guidance laws is a crucial
consideration for A/C manufacturers. Currently, they are more inclined to explore PBVS solutions as
a viable option. The primary benefit offered by PBVS lies in the separation of the control law from
the aircraft’s pose estimation relative to a target, achieved through the extraction of all pertinent visual
primitives. However, when compared to IBVS approaches, PBVS demands a greater amount of prior
knowledge regarding the captured 3D scene, such as navigation databases and camera calibrations. After
the pioneering work led by Dickmanns et al. in dynamic vision for large size A/C and helicopters using
multiple sensor data for state estimation [18, 19], Gibert et al. [20, 21] conducted comprehensive research
on the development of various nonlinear observers for visually estimating flight-path deviations in the
context of civil A/C landing applications. Their analysis of the observability of the nonlinear system in
the estimation problem led to the conclusion that it is necessary to incorporate data from at least two
points on the runway or its two sidelines in order to maintain system observability during the landing
phase. Gibert [22] presented a comparison of up to six types of nonlinear observers. It is important to
note that the available information includes aircraft attitude, ground-relative velocities, and accelerations,
which are provided by the Inertial Measurement Unit (IMU) sensors. Notably, no geometric information
related to the destination runway is necessary for the analysis. Further recent studies have considered
Multisensor Data Fusion (MDF) techniques between a stereo camera and GPS/GNSS or an hybridization
with inertial information, as well as solutions merging additional thermal sensors [23–26]. As presented
in [27], time delays are systematically introduced by the image processing software layer that will affect
any downstream estimation process. In the recent Europe-Japan collaborative research project called
VISION 1, vision-based aircraft relative navigation to destination runways with known dimensions has

1VISION: Validation of Integrated Safety-enhanced Intelligent flight cONtrol
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been tackled [23]. They developed a delayed-Error-State Kalman Filter which compensates, forward in
time, for the image processing delay by using camera trigger signal.

In this paper, a novel PBVS strategy capable of ILS-like measurements and performance is developed.
A Vision-Aided EKF (VAEKF) algorithm is introduced to estimate, at least partially, system state
variables. This estimation stage is fed by one or several vision-based measurements elaborated by a
set of Image Processing (IP) algorithms which aim at extracting all visual primitives of interest. The
vision-based estimated states are used to reconstruct the standardized ILS error signals, which are then fed
into the system guidance controllers. This can be done thanks to specific navigation database typically
accessible through the Flight Management System. The proposed vision-based autonomous landing
solution is validated on a high fidelity simulator with real-time constraints developed at ONERA [28].

The paper is structured as follows: Section 2 provides an overview of the overall control framework
and details the image processing algorithms; Section 3 presents the VAEKF and the integration of
chosen visual measurements in the estimation process; Section 4 assesses the system’s performance by
conducting landings on a real-time simulation platform that can replicate a range of visual and weather
conditions. Finally, Section 5 concludes the article and states future perspectives.

2 Pose-Based Visual Servoing strategy
In this section, we introduce a vision-based autonomous landing control strategy. This approach offers

an alternative solution for conducting autonomous landings without ILS and/or G/SBAS augmentation.
To this end, we adopt a Pose-Based Visual Servoing (PBVS) approach. The concept is to incorporate
supplementary measurements, either for the entire landing procedure or a specific timeframe, in order
to enable an ILS-like landing to be autonomously executed. An overview of the control principle is
first presented, then the IP and Computer Vision (CV) algorithms to provide a runway’s center-line
measurements are introduced. The novelty of the proposed PBVS approach lies in the selection of visual
features and their integration into the process of estimating the aircraft’s pose relative to the designated
runway.

2.1 Overall principle

Fig. 3 General block diagram of the PBVS software solution.

The proposed PBVS strategy, depicted in Fig. 3, can be decomposed in: a sensor layer, a software
layer and a system layer. The sensor layer is in charge of capturing all necessary raw data that guarantee
to the global landing function a nominal behavior. The software layer aims at processing previous raw
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data in order to deliver reliable flight-path deviations viewed as reference inputs by the downstream
layer. This layer gathers both advanced image processing and the VAEKF algorithms, i.e. the MDF.
The system layer can be any A/C autopilots to perform the final approach segment trajectory until
the end of the landing flight phase. Such architecture presents several advantages. First, utilizing
MDF algorithms that correlate all available measurements, it becomes feasible to filter out all signals
processed by the CV+IP functional block. A crucial consideration arises from the fact that, in real-
world scenarios, the noise characteristics of vision-based signals deviate from the assumptions of a
normal density function. Raw IP measurements are frequently subject to non-stationary disturbances
and can also exhibit a considerable number of outliers. This circumstance motivated the creation of an
adaptive MDF algorithm designed to accommodate these particularities. Second, the system layer may
be embodied by current A/C Flight Control Systems (FCS) directly, since upstream functional pipeline
delivers the same flight-path deviations format (DEVLOC,DEVGLD) as for ILS-based autopilots. Using
these physical-analytical redundant measurements as reference inputs for aircraft navigation and guidance
does not question current commercial jet A/C control strategy entrenched in aviation industry. Third,
for the MDF component, the potential of using model-based techniques for describing the expected
A/C behavior. On the one hand, they permit to deliver filtered and consolidated flight-path deviation
estimates by merging all available measurements (including the vision-based ones) in nominal (unfaulty)
conditions, and, on the other hand, they can make up for failed measurement inputs in degraded (faulty)
conditions.

Thus, the software layer reconstructs by merging all available inertial and vision-based measurements
both lateral and vertical flight-path deviation estimates which can directly feed the A/C flight guidance
control laws. This conversion is achieved by referring to the appendix C of DO-253 official document [29]
written by the Radio Technical Commission for Aeronautics, now referred as RTCA. With an additional
navigation database that gathers all necessary information related to many destination runways worldwide
(glide path angle, threshold crossing-height, runway width and length, etc.), the lateral and vertical
deviations flight-path deviations, respectively DEVLOC and DEVGLD, can be computed as:


DEVLOC = 𝐾LOCtan−1(ulat ·

(
rECEF

A/C − rECEF
0,LOC

) ��urwy ·
(
rECEF

A/C − rECEF
0,LOC

) ��)
DEVGLD = 𝐾GLDtan−1(uver ·

(
rECEF

A/C − rECEF
0,GLD

)
𝑑 (rECEF

A/C , rECEF
0,GLD)

)
− 0.7

𝑑 (rECEF
A/C , rECEF

0,GLD) =
√︃(

urwy ·
(
rECEF

A/C − rECEF
0,GLD

) )2 + (
ulat ·

(
rECEF

A/C − rECEF
0,GLD

) )2
(1a)
(1b)

(1c)

In Eq. (1a) and (1b), coefficients (𝐾LOC, 𝐾GLD) correspond to constant quantities that are computed from the
on board navigation database. The orthogonal triplet (urwy, ulat, uver) defines the runway frame considered
for these calculations whose origin coincides with destination runway Landing Threshold Point (LTP). It
is a local East-North-Up (ENU) frame and the three axes are aligned alongside of the runway, to the left
and upwards respectively. Then, rECEF

A/C refers to the position vector of the aircraft expressed in the ECEF
frame. Both rECEF

0,LOC and rECEF
0,GLD vectors designate constant reference positions whose coordinates are also

given in ECEF frame. They are computed using previous navigation database for any given destination
runway and correspond to specific points located in the close vicinity of the runway.

2.2 Image Processing and Computer Vision algorithms
Integrating any available vision measurements within navigation-based MDF can be done in several

different ways, depending if any mathematical modeling can be derived to describe vision variables time
evolution. If they exist, such models associate these latter vision variables with dynamical navigation
states that will be estimated within an adapted and tightly coupled version of [vision/navigation]-based
EKF estimation scheme. By contrast, if such modelings cannot be derived, any available vision measure-
ments will therefore only be used to correct predicted A/C navigation state vector as dissimilar sources
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of information. Thus, all available vision measurements will bring an extra and dissimilar information
that will be merged within the EKF-based estimation scheme. The concept revolves around generating
a prediction based on the vision measurements of a runway center-line parametrization. This prediction
serves to augment the innovation sequence utilized in the EKF for estimating aircraft states.

Fig. 4 Flowchart and mathematical operations performed by the Runway Detection (RuDe) algorithm

The Region Of Interest and Runway Detection (ROI+RuDe) algorithmic pipeline, represented with
Fig. 4 is an adaptation of D. Dickmanns [20, 30] and K. Schertler [31] researches. ROI and RuDe
algorithms are based on common image processing techniques so that ROI+RuDe pipeline combines
both image area tracking (ROI) and runway center-line detection (RuDe) capabilities. The ROI algorithm
is a prerequisite for RuDe to operate effectively as RuDe processes pixels over time within images that
are cropped based on the picture area defined by the ROI. The ROI algorithm requires as inputs the world
referenced geographic coordinates of the destination runway end point, both length and width of the
destination runway, as well as its QFU61 [32]. In order to get rid of both GPS positioning measurements
and A/C estimated states within the computation of the image area that surrounds the destination runway,
thus preventing downstream data fusion from undesirable correlation effects, the ROI algorithm relies
on a vision-based tracking technique. This tracker is firstly initialized from one GPS measurement point
only before GPS sensor is turned off and an accurate enough positioning information available. After
this per design initialization step, the ROI is tracked through time until destination runway threshold gets
out of the image. After that, the ROI is fixed until the end of the roll-out phase. The tracking algorithm
used corresponds to the MEDIANFLOW tracker of the OpenCV library. The tracking operation is not
carried out by following through time the 4 edges of the parallelogram which defines the region of
interest. Instead, a single MEDIANFLOW tracker is used to trace the center of the ROI every 4 image
frames to alleviate the computational burden of the operation, assuming that the observed 3D scene
does not significantly change during these 4 frames. To robustify the tracking solution used within ROI
algorithm and prevent from too important tracker drift, two additional ROI correction mechanisms were
also implemented. The first one consists in periodically comparing current computed ROI, derived from
image processing, with the one obtained from the A/C estimated state components. If a significant
discrepancy expressed in pixels is observed, then the ROI is reinitialized with the one computed based
on the A/C estimated state. The second mechanism makes use of the runway center-line detected in the
image by the RuDe algorithm to laterally reposition the ROI accordingly, assuming that this latter must
be symmetric w.r.t. the detected axis.

The sequence of mathematical operations implemented in the RuDe algorithm, presented in Fig. 4,
details both algorithmic flowchart and data flow that lead to the elaboration of the measurement data(
𝑎𝑚 𝑏𝑚 𝑐𝑚

)𝑇
. A Sobel-Feldman filter is employed to detect edges within the processed or cropped
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Fig. 5 Runway center-line parametrization

image. It operates as a discrete differentiator, providing an approximation of the gradient of the image
intensity function. The principle of this Sobel operator is a double convolution of the image with a small,
separable, and integer-valued filter in both horizontal and vertical directions. In this context, only the
gradient in the horizontal direction, G𝑋 , is considered. While this filter imposes a relatively low CPU
burden, it provides only a coarse approximation of the gradient of the image intensity function. This
limitation becomes particularly evident for high-frequency variations within the observed 3D scene. From
a pinhole camera model, an estimation is made of the homography of the small-sized 3D scene contained
in the cropped image obtained from the computed ROI which includes the runway of destination. The
estimated homography matrix, denoted as H(𝑡), enables the transformation of the perspective view of
the processed cropped image, effectively removing projective distortion. Then, a spectral analysis is
carried out in the Fourier domain on the straightened cropped image by exploiting both pre-computed
G𝑋 and H(𝑡) quantities. Coupling the outputs of such an analysis with the cross correlation peaks
searching algorithm permits to spatially localized in the cropped image the potential axes of symmetry
of the planar object under observation. The selection of the most probable right axis is then made by
applying a RANSAC64 algorithm [33]. The RANSAC algorithm, employed to address a line fitting
problem using a set of extracted points, produces several candidate linear models representing potential
runway center-lines. Each of these models is associated with a fitness value that can be interpreted as a
measure of confidence. These candidate lines are obtained by fitting multiple linear models to several
data random samplings and then returning the model with the highest expectation w.r.t. a given data
subset. Faced with these various options, it must be pointed out that RuDe algorithm outputs a unique line
which corresponds to the one with the highest confidence level returned by the RANSAC sub-function.
The RANSAC method is an iterative and non-deterministic algorithm since it outputs results featured
by probabilities which increase as more iterations are allowed. Once the destination runway center-line
has been extracted and identified in the image, the corresponding measurements

(
𝑎𝑚 𝑏𝑚 𝑐𝑚

)𝑇
are

obtained using the following mathematical parametrization:

®𝑛 =
−−−→
𝑂𝐶𝐴 × −−−→

𝑂𝐶𝐵

∥−−−→𝑂𝐶𝐴 × −−−→
𝑂𝐶𝐵∥

=
©«
𝑎𝑚

𝑏𝑚

𝑐𝑚

ª®®¬F𝐶 ⇒ ∥−→𝑛 ∥ =
√︁
𝑎2 + 𝑏2 + 𝑐2 (2)

where × designates the vectorial product. The unit norm of vector ®𝑛 can be viewed as a constraint on
the three numerical components 𝑎, 𝑏 and 𝑐, so much that the normalization operation (i.e. the division
by ∥−−−→𝑂𝐶𝐴 × −−−→

𝑂𝐶𝐵∥) is performed a posteriori. The proposed parametrization is adopted to shape any
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line-based landmark specific of the runways. It relies on the coordinates, expressed in the Camera
Coordinate System (CCS), of the unit vector that is normal to the plane containing 𝑂𝐶, 𝐴 and 𝐵, as
depicted in Fig. 5. Point 𝑂𝐶 corresponds to the center of the camera, points 𝐴 and 𝐵 respectively refers
to the image projection of the runway LTP/FTP and the opposite runway LTP. Therefore, the (𝑂𝐶𝐴𝐵)
plane intersects the virtual image plane at the location of the detected line. Consequently, adding vision-
based measurements

(
𝑎𝑚 𝑏𝑚 𝑐𝑚

)𝑇
, coming from the ROI+RuDe algorithmic chain, in the data fusion

process will bring only two new degrees of freedom in information processing i.e., two new dissimilar
and uncorrelated measurements. This observation will also have some impact on the implementation of
the sequential measurements update procedure within the EKF, as these three peculiar measurements do
not respect the assumption of statistical independence.

3 Multisensor Data Fusion filter
The problem of reconstructing accurate reference inputs, DEVLOC and DEVGLD, for aircraft guidance

during flight approach segment relies entirely on the knowledge of rECEF
A/C i.e., the absolute position of

the A/C expressed in the Earth-Centered Earth-Fixed (ECEF) frame. Thereafter, the estimation of the
absolute positioning vector r̂ECEF

A/C is performed by means of VAEKF techniques. An augmented nonlinear
state space representation of A/C navigation dynamics, denoted by MNL in the sequel, is derived from
both navigation kinematic relationships [34] and most relevant sensors errors to be estimated (e.g.,
accelerometers/gyrometers biases, misleading cameras calibrations, air data probes inconsistencies, etc.).
Such a dynamic modeling can be mathematically formulated as follows:

MNL :

{
¤X(𝑡) = 𝑓 (X(𝑡),Y𝑚 (𝑡))
Y(𝑡𝑘 ) = 𝑔(X(𝑡𝑘 ))

(3)

Previous formulation describes a continuous-time process modeling with discrete-time output observation
with Y𝑚 referring to a vector of measurements. To illustrate the integration of visual measurements,
the considered state vector can be formulated as: X =

(
𝑉𝑁 𝑉𝐸 𝑉𝑧 𝛿𝐸 _𝐸 𝑧 𝜓 \ 𝜙

)𝑇
and the

vector of measurements is defined with Eq. 2 as Y𝑚 =

(
𝑉𝑁 𝑉𝐸 𝑉𝑧 𝛿𝐸 _𝐸 𝑧 𝜓 \ 𝜙 𝑎𝑚 𝑏𝑚 𝑐𝑚

)𝑇
where: (𝑉𝑁 𝑉𝐸 𝑉𝑧) refers to the NED velocities of the aircraft; (𝛿𝐸 _𝐸 𝑧) corresponds to its latitude,
longitude and geodetic altitude (polar positioning coordinates in ECEF frame); the triplet (𝜓, \, 𝜙)
describes A/C attitude that is to say the orientation of the A/C body frame w.r.t. the local NED system
of axes. The EKF-based estimation scheme is, a prediction step propagates both states and covariance
errors to predict their future values between two discrete time-instants 𝑘 and 𝑘 + 1 while a correction step
corrects a posteriori these predictions once new measurements at time-instant 𝑘 + 1 become available.
Thus, in our context, and among other possibilities, by considering that all observations (contained in
vector Z𝑘 in what follows with Z𝑘 composed of 𝑝 measurement(s) exactly with 𝑝 ∈ N★) are available at
every sample period 𝑑𝑡 and futhermore, that these latter are perturbated by uncorrelated and independent
noises (i.e., ∀𝑘 ∈ N, the estimated measurement noise covariance matrix is diagonal), the MDF filtering
equation may read:

X̂𝑘+1|𝑘+1 = X̂𝑘+1|𝑘 +
𝑝∑︁
𝑖=1

K𝑖
𝑘+1 [Z

𝑖
𝑘+1 − 𝑔(X̂𝑘+1|𝑘 )] (4)

Previous filtering equation encodes a sequential measurement update mechanism which usually prevents
from ill-conditioned problem when computing correction gain matrix K at each time step (obtained
generally by inversion of a linear system). Assuming also that the correction term remains constant over
[𝑡𝑘 ; 𝑡𝑘+1 = 𝑡𝑘 + 𝑑𝑡 [ for 𝑑𝑡 << 1, the estimated state vector at time 𝑘 + 1 can be approximated with a good
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precision such that:

X̂𝑘+1|𝑘+1 ≃ X̂𝑘 |𝑘 + 𝑓 (X̂𝑘 |𝑘 ,Y𝑚 (𝑡𝑘 )) · 𝑑𝑡 +
𝑝∑︁
𝑖=1

K𝑖
𝑘+1 [Z

𝑖
𝑘+1 − 𝑔(X̂𝑘+1|𝑘 )] (5)

The previous filtering equation requires to design gains K𝑖
𝑘+1 which depend on analyzing the filtering

equation (2.14) shows that the confidence that we have in the model (process equation) relatively to
the one that we have in the observations. Both levels of confidence are quantified by the values in the
matrices Q (power spectral density matrix) and R (covariance matrix). It is common to choose the gain
that minimizes the variance of the state estimation error 𝜖 (𝑡) = X(𝑡) − X̂(𝑡) (corresponding estimated
covariance matrix will be denoted by P̂𝑘 = 𝐸 [𝜖𝑘𝜖𝑇𝑘 ]. Thus, the computational steps preceding Eq. 4 are
the following: 

X̂𝑘+1|𝑘 = X̂𝑘 |𝑘 +
∫ 𝑡𝑘+1

𝑡𝑘

𝑓 (X(𝑡),Y𝑚 (𝑡𝑘 ))𝑑𝑡

K𝑘+1 = P̂𝑘+1|𝑘C𝑇
𝑘

(
C𝑘 P̂𝑘+1|𝑘C𝑇

𝑘 + R𝑘

)−1

P̂𝑘+1|𝑘 ≈ Φ𝑘+1P̂𝑘 |𝑘Φ𝑇
𝑘+1 + Q(𝑡𝑘 )𝑑𝑡

Φ𝑘+1 = 𝑒A𝑘 ≈ I + A𝑘𝑑𝑡 + (A𝑘𝑑𝑡)2/2!

C𝑘 =
𝜕𝑔(X(𝑡))
𝜕X

����
X(𝑡)=X̂𝑘+1 |𝑘

A𝑘 =
𝜕 𝑓 (X(𝑡),Y𝑚 (𝑡𝑘 ))

𝜕X

����
X(𝑡)=X̂𝑘 |𝑘

(6a)

(6b)

(6c)
(6d)

(6e)

(6f)

Once these theoretical estimation principles have been stated, VAEKF algorithms can be designed
and implemented for merging an heterogeneous set of simulated measurements Z comprising GPS/GNSS
data, IMU measurements, air data flight parameters etc. but also, and above all, vision-based information
such as the one previously presented with the RuDe image processing algorithm. The prediction associated
with the vision measurements is computed with Eq. 2. The key point is that both points A and B (cf.
Fig. 5) correspond to known mapped locations available in the navigation database. Therefore, the
Cartesian coordinates of these points w.r.t. the ECEF frame can be immediately calculated. Then, the
successive and multiple changes of coordinates between ECEF, local NED, aircraft body and camera
frames (assuming a pinhole camera model) allow to deduce the coordinates of both

−−−−→
𝑂𝐶𝐴

′ and
−−−−→
𝑂𝐶𝐵

′

vectors in the camera frame, F𝐶 . The coordinates of the runway LTP can be written in a compact form
of the whole change of coordinates in function of estimated A/C state as:

X𝐿𝑇𝑃
𝐶 = −M𝑟𝑜𝑡

𝐶→𝐵

(
M𝑟𝑜𝑡
𝑁→𝐵{𝜓, \, 𝜙}M

𝐿𝑇𝑃
𝐸→𝑅′{𝛿𝐿𝑇𝑃, _𝐿𝑇𝑃}

(
X𝐶𝑜𝑀
𝐸 {𝛿𝐸 , _𝐸 , ℎ} − X𝐿𝑇𝑃

𝐸

)
+ T𝐵

)
(7)

with X𝐶𝑜𝑀
𝐸

and X𝐿𝑇𝑃
𝐸

respectively the ECEF coordinates of the A/C Center of Mass (CoM) and the
runway LTP defined as: 

X𝐶𝑜𝑀
𝐸 =

©«
(𝑁 (𝛿𝐸 ) + ℎ) cos 𝛿𝐸 cos_𝐸
(𝑁 (𝛿𝐸 ) + ℎ) cos 𝛿𝐸 sin_𝐸(
𝑁 (𝛿𝐸 ) (1 + 𝑒2) + ℎ

)
sin 𝛿𝐸

ª®®¬
X𝐿𝑇𝑃
𝐸 =

©«
(𝑁 (𝛿𝐿𝑇𝑃) + ℎ) cos 𝛿𝐿𝑇𝑃 cos_𝐿𝑇𝑃
(𝑁 (𝛿𝐿𝑇𝑃) + ℎ) cos 𝛿𝐿𝑇𝑃 sin_𝐿𝑇𝑃(
𝑁 (𝛿𝐿𝑇𝑃) (1 + 𝑒2) + ℎ

)
sin 𝛿𝐿𝑇𝑃

ª®®¬

(8a)

(8b)
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M𝐿𝑇𝑃
𝐸→𝑅′{𝛿𝐿𝑇𝑃, _𝐿𝑇𝑃} is the constant rotation matrix between the ECEF and the runway geographic frame,

𝑅′, given by:

M𝐿𝑇𝑃
𝐸→𝑅′{𝛿𝐿𝑇𝑃, _𝐿𝑇𝑃} =


− sin 𝛿𝐿𝑇𝑃 cos_𝐿𝑇𝑃 − sin 𝛿𝐿𝑇𝑃 sin_𝐿𝑇𝑃 cos_𝐿𝑇𝑃

− sin_𝐿𝑇𝑃 cos_𝐿𝑇𝑃 0
− cos 𝛿𝐿𝑇𝑃 cos_𝐿𝑇𝑃 − cos 𝛿𝐿𝑇𝑃 sin_𝐿𝑇𝑃 − sin 𝛿𝐿𝑇𝑃

 (9)

M𝑟𝑜𝑡
𝑁→𝐵

{𝜓, \, 𝜙} represents the rotation matrix that relates the A/C local NED frame to the A/C body
frame, as detailed in [35]. This matrix depends on the estimated states of the aircraft. Lastly, M𝑟𝑜𝑡

𝐶→𝐵
and

T𝐵 denote the fixed rotation matrix and translation vector between the A/C body frame and the CCS,
respectively. The coordinates of point 𝐵′, the Opposite Threshold Point (OTP), are obtained with similar
operations. Applying Eq. 2 to X𝐿𝑇𝑃

𝐶
and X𝑂𝑇𝑃

𝐶
with the normalization of the cross product provides the

predicted output
(
�̂�𝑘+1|𝑘 �̂�𝑘+1|𝑘 𝑐𝑘+1|𝑘

)𝑇
which can be compared with the measurements issued by the

ROI+RuDe pipeline. The general structure of the measurement Jacobian matrix C, Eq. 6e, is increased
with the derivation of ®𝑛 for each states 𝑥 of the previously defined vector X such that:

𝜕®𝑛
𝜕𝑥

=
1
𝐷 ∥.∥

𝜕

𝜕𝑥
(X𝐿𝑇𝑃

𝐶 × X𝑂𝑇𝑃
𝐶 ) − 1

𝐷3
∥.∥

(
(X𝐿𝑇𝑃

𝐶 × X𝑂𝑇𝑃
𝐶 )𝑇 𝜕

𝜕𝑥
(X𝐿𝑇𝑃

𝐶 × X𝑂𝑇𝑃
𝐶 )

)
(X𝐿𝑇𝑃

𝐶 × X𝑂𝑇𝑃
𝐶 ) (10)

with 𝐷 ∥.∥ = ∥X𝐿𝑇𝑃
𝐶

× X𝑂𝑇𝑃
𝐶

∥. At this stage, this extra vision-based information can be merged to correct
A/C predicted state �̂�𝑘+1|𝑘 within data fusion process.

4 Implementation of the control architecture
The PBVS strategy is validated by performing various landings on a high-fidelity real-time simulation

platform developed at ONERA [28]. The software/hardware architecture has been implemented to
guarantee tight and high-fidelity coupling between flight dynamics and visual environment models,
allowing for state observation, computer vision processing, virtual sensor data fusion and full aircraft
control. A Boeing 747 mathematical model, [36], is chosen as use case for the simulation environment
and implemented on the real-time programming unit. The simulator operates by generating a synthetic
video stream with Microsoft Flight Simulator 2020 on a computing unit, coupled to the real-time aircraft
pose evolution streamed by a Speedgoat real-time machine, while a second computing unit captures
the images and executes the MDF layer. Due to the lack of real flight data with a Boeing 747, each
autonomous vision-based landings are compared to nominal landings. A nominal landing consists in
performing, on the simulation platform, an autonomous landing with ILS autopilots fed by position
measurements. The PBVS strategy is initially demonstrated through landings on the two runways (32L
and 32R) of Toulouse’s airport (LFBO). In a subsequent endeavor, the sensitivity of the system to different
lighting conditions is addressed.

4.1 Guidance control
Every landing starts with GPS/GNSS measurements, which in the absence of sensor models corre-

sponds to the exact A/C position issued by the modeled dynamics, to initialize the ROI+RuDe algorithms.
A switch to a vision-based landing occurs when the runway is detected on the image with enough pix-
els. In the GPS/GNSS initialization phase, the A/C is guided with altitude and thrust control while
beginning to align with the runway by capturing the lateral deviation signal. Upon incorporating vision
measurements, the A/C transitions to tracking and capturing both deviations, along with maintaining
Indicated Airspeed, 𝑉𝐼 𝐴𝑆, tracking. The pre-vision-based control is traduced by the following guidance
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laws feeding A/C inner loops, i.e. pitch, roll and thrust, defined as [37]:
𝜙𝑑 = K𝜙DEVLOC + D𝜙

¤DEVLOC
\𝑑 = K\ (𝑍𝑑 − 𝑍) + D\

(
𝑉𝑍𝑑 −𝑉𝑍

)
𝑢𝑡ℎ𝑟𝑑 = 𝑢𝑡ℎ𝑟𝑡𝑟𝑖𝑚

(11a)
(11b)
(11c)

with 𝑢𝑡ℎ𝑟𝑡𝑟𝑖𝑚 the necessary thrust to maintain a desired NED altitude, 𝑍𝑑 . K\ , K𝜙 and D\ , D𝜙 are
respectively the constant proportional and derivative gains for the longitudinal/lateral guidance laws.
When the ROI+RuDe provides a validity of the visual measurements, the guidance laws are fed by the
estimated lateral and longitudinal deviations computed by the VAEKF. These last become [37]:

𝜙𝑑 = K𝜙DEVLOC + D𝜙
¤DEVLOC

\𝑑 = −K\DEVGLD + D\
¤DEVGLD + 𝜎𝐻

(
K 𝑓 𝑙𝑎𝑟𝑒𝛿𝑔 + D 𝑓 𝑙𝑎𝑟𝑒

¤𝛿𝑔
)

𝜎𝐻 =

{
1 if 𝛿𝑔 ≤ 𝛿 𝑓 𝑙𝑎𝑟𝑒
0 otherwise

𝑢𝑡ℎ𝑟𝑑 = K𝑢

(
𝑉𝐼 𝐴𝑆𝑑 −𝑉𝐼 𝐴𝑆

)
+ D𝑢

( ¤𝑉𝐼 𝐴𝑆𝑑 − ¤𝑉𝐼 𝐴𝑆
)

(12a)
(12b)

(12c)

(12d)

with K. and D. are respectively constant proportional and derivative gains. A flare phase is implemented
in the longitudinal guidance law with the term 𝜎𝐻 in Eq. (12b). 𝛿𝑔 represents the distance to the ground,
while 𝛿 𝑓 𝑙𝑎𝑟𝑒 signifies the distance to initiate the flare maneuver, which is typically set at 50 feet above the
LTP. Different capturing and tracking dynamics of the lateral and longitudinal deviations are imposed to
deal with external disturbances such as crosswinds [38].

In the event of a loss or failure in runway detection using the ROI+RuDe algorithms, the validity
signal prompts a switch back to available measurements. This means that the landing continues with
Eq. 12, which are fed by ground-truth deviations.

4.2 Performance evaluation through landings on a real-time simulation platform

Condition # C1 C2 C3
Longitude, Latitude (°) 43.619, 1.3721 43.4723, 1.5318 43.5131, 1.4825

Altitude - wgs (ft) 3087 3355 3310
𝜙, \, 𝜓 (°) 1.45, -7.03, -24.4 3.88, 25.16, -62.33 1.6, -1, -37.2
¤𝜙, ¤\, ¤𝜓 (°/s) -0.29, -1.12, -0.49 0.76, -3.15, 0 -0.2, 2, 0

Flight Path Angle (°) 1.453 0 0.9
Speed (kts) 240 260 260

Table 1 Boeing 747 initial flying conditions for landings in Toulouse airport (LFBO)

All initial conditions employed for landing simulations, on both LFBO runways, correspond to
realistic data from real flight and are provided in Tab. 1. For these flights, the simulation platform is
configured to depict a bright, sunny day with the time set at noon as illustrated by Fig. 6. Fig. 7a and 7b
provide a graphical representation of the 3D trajectories for the vision-based landings, juxtaposed with
their respective nominal trajectories. Approximately 12 km from the LTPs, the ROI+RuDe algorithms
initiate the detection of the runway of interest in the image. Fig. 6 offers a visual representation of the
ROI, depicted as a blue parallelepiped, alongside the center-line represented by a green line. As a result,
the VAEKF outputs continue to provide guidance commands throughout the touchdown phase, ensuring
that the runway remains visible in the image throughout the entire process. Upon initial examination, the
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autonomous vision-based landings (illustrated with dashed lines) effectively replicate the performance
of an ILS-like autonomous landing with ground-truth measurements (depicted with solid lines). This
finding is corroborated by the analysis of DEVLOC and DEVGLD deviations, as shown with Fig. 8 and 9.

Fig. 6 Illustration of ROI+RuDe outputs on the
MSFS world rendering of Toulouse’s airport.

Fig. 10 presents the corresponding errors against
the ground-truth actual deviations of all landings.
The lateral error, DEVLOC, has a zero mean distri-
bution and a standard deviation of about 0.1 m,
while the vertical error, DEVGLD has a 0.8 m
mean and a 0.7 m standard deviation. While lower
performance levels are observed for aircraft posi-
tioned beyond a distance of 10 km from the run-
way, it is noteworthy that, as demonstrated in the
comparison shown in Fig. 8 and 9, the estimation
performances remain acceptable. They closely
align with the behaviors achieved using ground-
truth measurements.

(a) 3D trajectories for landings on LFBO 32L (b) 3D trajectories for landings on LFBO 32R

Fig. 7 Comparison of 3D trajectories between ILS landings with GPS-GNSS (full-line) and vision-based
landings (dashed-line) performed on SCHEMIN for the initial conditions listed in Tab. 1.
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Fig. 8 Comparison of estimated deviations DEVLOC (top subplot) and DEVGLD (bottom subplot) in function
of the distance to the runway LTP for landings on LFBO 32L initialized with conditions in Tab. 1.

Fig. 9 Comparison of estimated deviations DEVLOC (top subplot) and DEVGLD (bottom subplot) in function
of the distance to the runway LTP for landings on LFBO 32R initialized with conditions in Tab. 1.

13Except where otherwise noted, content of this paper is licensed under
a Creative Commons Attribution 4.0 International License.

The reproduction and distribution with attribution of the entire paper or of individual
pages, in electronic or printed form, including some materials under non-CC-BY 4.0
licenses is hereby granted by the respective copyright owners.



Fig. 10 Estimation error of DEVLOC (top subplot) and DEVGLD (bottom subplot) in function of the distance
to the runway LTP for landings initialized with conditions in Tab. 1.

4.3 Sensitivity to visual conditions
As demonstrated in open-loop validation tests conducted in [28], it is evident that lighting conditions

have an impact on the performance of the VAEKF. Therefore, it is imperative to conduct autonomous land-
ings under various weather conditions to validate the proposed control framework. To that aim,landings
are executed under the visual conditions illustrated in Fig. 12.

Fig. 11 3D trajectories of vision-based landings, alongside nom-
inal trajectory at LFBO 32L, for different weather and at C1 ini-
tial conditions.

All flights are initiated with condition
C1, detailed in Tab. 1, with the aim of
landing on runway 32L. Additionally to
illustrate the variety of the visual en-
vironment and the different brightness,
Fig. 12 demonstrates the accuracy of
the ROI+RuDe pipeline at 1.5km from
the LTP. Upon reviewing the compari-
son of 3D trajectories for autonomous
vision-based landings against a nomi-
nal trajectory depicted in Fig. 11, an
initial observation reveals similar per-
formance levels. Fig. 14 confirms the
generally consistent behavior of the CV
algorithms with respect to the evolution
of the center-line parameters. Notably,
in conditions of lower image brightness,
performance degrades as the aircraft ap-
proaches the runway. This trend is also
evident in Fig. 13, which highlights a
slower lateral dynamic for darker im-
ages. This behavior can be attributed to Fig. 15, which illustrates that image brightness affects estimation
accuracy, particularly when the aircraft is further from the runway. In such cases, errors of nearly 2m are
observed, impacting the inherently sluggish lateral dynamics of the Boeing 747. In conclusion, despite
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the sensitivity of the ROI+RuDe algorithms to image brightness, the VAEKF proves to be capable of
providing satisfactory estimates of the lateral and longitudinal deviations under the considered weather
conditions. In cases of more challenging image illumination, this may lead to a slower capture of the
lateral deviation signal and potentially result in a touchdown with a minor offset from the center-line,
typically less than 3m, as demonstrated in Figure 13 for a runway width of 45 meters.

Fig. 12 Illustration of ROI+RuDe outputs for different weather conditions. From top-left clockwise: clear,
sun-facing, overcast, early, cloudy, snowy.

Fig. 13 Comparison of estimated deviations DEVLOC (top subplot) and DEVGLD (bottom subplot) in
function of the distance to the runway LTP.
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Fig. 14 Center-line parameters not normalized, Eq. 2, in function of the distance to the runway LTP for
visual conditions depicted in Fig. 12.
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Fig. 15 Estimation error of DEVLOC (top subplot) and DEVGLD (bottom subplot) in function of the distance
to the runway LTP for visual conditions depicted in Fig. 12.

5 Conclusion
To conclude, this paper presented a novel Pose-Based Visual Servoing strategy for autonomous

approach and landing of an airliner. The proposed architecture is decomposed in an ILS-like guidance
law supplied by an original vision-based multi-sensor data fusion for the aircraft’s lateral and longi-
tudinal deviations calculation w.r.t. the runway center-line. The integration of the runway center-line
paramatrization for the aircraft pose estimation is another key contribution of the presented study. To
highlight the interest and the feasibility of the novel control scheme, extensive tests have been carried out
on a highly realistic simulation platform available at ONERA. Results demonstrated the relevance of the
proposed vision-based control strategy for civil aviation autonomous functions in forthcoming future.

Future work will focus on robustifying the control law and parameters estimation against external
perturbations and sensor’s fault. Likewise, runway detection with artificial neural networks and machine
learning strategies will be investigated to reduce the use of geographical knowledge information.
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