
Flight Trajectory Generation through a Collocation
Approach with Successive Linear Programming

Zhidong Lu Ph.D. Candidate, Technical University of Munich, Institute of Flight System Dynamics,
85748, Garching, Germany. zhidong.lu@tum.de

Haichao Hong Associate Professor, Shanghai Jiao Tong University, School of Aeronautics and Astro-
nautics, 200240, Shanghai, People’s Republic of China. haichao.hong@sjtu.edu.cn

Florian Holzapfel Professor, Technical University of Munich, Institute of Flight System Dynamics,
85748, Garching, Germany. florian.holzapfel@tum.de

ABSTRACT

Optimal control methods are widely used to generate flight trajectories for aerial vehicles. These op-
timal control problems are generally non-convex due to nonlinear flight dynamics and constraints.
This study integrates a collocation framework with successive linear programming to address
non-convex trajectory generation problems. A linear programming subproblem is constructed by
linearizing nonlinear collocation constraints and path constraints. This subproblem aims to find
optimal increments of parameters, states, and controls to refine a reference trajectory, which is
subsequently re-linearized to formulate subsequent subproblems. An approximate solution to the
original optimal control problem is derived through the iterative resolution of these subproblems.
To address the potential unboundedness and infeasibility of the subproblem, this paper incorpo-
rates linearized constraints into the cost function via exact penalties and enforces trust region on
the increments at each collocation node. The maximum allowable trust region size is dynamically
adjusted based on the linearization error to assure global convergence. Practical applications in
fixed-wing aircraft and quadrotor trajectory generation tasks demonstrate the effectiveness of our
approach. Comparative analyses with solutions from state-of-the-art toolboxes indicate that our
method achieves near-optimal and dynamically feasible trajectories more efficiently in terms of
iterations and computational time. The source code for the algorithm and examples presented in
this paper is available at https://github.com/lenleo1/Colloc_SLP.git.

Keywords: Trajectory Generation; Optimal Control; Trapezoidal Collocation; Successive Linear Programming

1 Introduction
Well-designed trajectories are essential for the safe and efficient operation of aerial vehicles. Various

trajectory generation techniques have been proposed in the literature. Among these, geometric methods
such as Dubins paths and clothoid curves [1, 2] have been used widely to generate flight trajectories.
These methods are simple but may not fully account for the complex flight dynamics, resulting in
dynamically infeasible trajectories unsuitable for flight control. In contrast, optimal control methods
generate dynamically feasible trajectories and offer improved performance.

A predominant approach for solving optimal control problems (OCPs) involves direct methods,
transcribing the OCP into a nonlinear programming (NLP) problem by discretizing the trajectory. Dis-

1Except where otherwise noted, content of this paper is licensed under
a Creative Commons Attribution 4.0 International License.

The reproduction and distribution with attribution of the entire paper or of individual
pages, in electronic or printed form, including some materials under non-CC-BY 4.0
licenses is hereby granted by the respective copyright owners.

EuroGNC
Navigation

ControlGuidance
2024Bristol, UK June 11th-13th

CEAS-GNC-2024-072

mailto:zhidong.lu@tum.de
mailto:haichao.hong@sjtu.edu.cn
mailto:florian.holzapfel@tum.de
https://github.com/lenleo1/Colloc_SLP.git

cretization techniques commonly used include shooting methods and collocation methods. The single
shooting method discretizes only the control input and thus reduces the number of optimization variables,
but it is sensitive to the initial guess [3]. Collocation methods, which involve full discretization of state
and control histories, stand out for their sparse gradient patterns, rapid local convergence, and ability
to manage unstable systems [4]. However, the computational complexity of solving the resulting NLP
problem remains substantial using general solvers.

Considering the challenges in solving a non-convex NLP, recent research has increasingly focused
on convex optimization for solving optimal flight control problems [5–12]. Convex Optimization is
appealing due to its theoretical guarantee of obtaining a globally optimal solution within polynomial
time if the problem configuration is feasible [13]. Within this context, two major approaches have been
distinguished. The first is lossless convexification, which transforms the original non-convex problem
into a convex counterpart while ensuring that solutions to the convex problem apply to the original [5, 6].
The second approach is Sequential Convex Programming (SCP), which solves the original non-convex
problem through a series of convex subproblems [7–11]. The convex subproblem can take the form of a
Linear Program (LP), a Quadratic Program (QP), a Convex Quadratically Constrained Quadratic Program
(QCQP), or a Second-Order Cone Program (SOCP). Usually, the successive linearization technique is
applied to linearize non-convex constraints in the original problem, facilitating the formulation of a
convex subproblem. After this subproblem is solved to full optimality, a new subproblem is created by
re-linearizing the original problem at the updated solution. Unlike the well-known Sequential Quadratic
Program (SQP) algorithms that use Hessian approximation of nonlinear constraints, the Sequential Convex
Programming (SCP) methods documented in the literature generally rely solely on first-order linearization
of constraints and do not necessitate Hessian approximations. The linearized constraints may render the
subproblem infeasible or unbounded. To tackle the infeasibility issue, Ref. [11] introduced collocation
residuals between every two adjacent nodes to ensure dynamical feasibility. References [8, 9] introduced
virtual controls to the linearized dynamics and constraints and then added them to the cost function.
Reference [14] directly penalized constraint violations by adding penalties to the cost. Regarding
unbounded subproblems, trust-region constraints are commonly used to restrict the optimization variables
to a vicinity of the reference solution. Furthermore, to enhance convergence, the size of the trust region
is updated in the iterative process based on a quantitative measure of the linearization error, that is, the
trust region is expanded, shrunk, or maintained according to standard trust region updating rules [15].

Many recent applications of SCP have formulated the subproblem as a SOCP. The second-order cone
constraints stem from the original OCP [7], or quadratic trust region constraints [9]. However, second-
order cone constraints in flight dynamics are uncommon in the specific context of aircraft flight trajectory
generation. Linear constraints can also express the trust region. Moreover, in many flight trajectory
generation tasks, cost functions can be modeled as linear functions of optimization variables when a
collocation framework is used to transcribe the OCP. Some examples are time duration [16, 17], flight
range [17, 18], fuel or energy consumption [19], and a combination of these [20]. These observations
justify the use of simpler LP subproblems within SCP. We acknowledge that many previous works
have examined the Successive Linear Programming (SLP) algorithms, highlighting their advantage in
solving large-scale sparse problems [21, 22]. Our work builds upon these SLP methods and introduces
several modifications, including implementing multiple trust regions, penalizing the trust region sizes,
and utilizing a continuous trust region update rule. These modifications aim at enhancing the robustness
and convergence of the iterative process.

In this paper, we leverage the successive linearization technique within a trapezoidal collocation
framework to formulate an LP subproblem characterized by a linear cost function, linear constraints
inherited from the original OCP, and linearized constraints. We address potential infeasibility and
unboundedness by incorporating all linearized constraints into the cost function via exact penalties and
imposing trust regions on optimization variables. Given the sparsity of the collocation framework,
we assign each collocation node a separate trust region instead of using a single trust region for all

2Except where otherwise noted, content of this paper is licensed under
a Creative Commons Attribution 4.0 International License.

The reproduction and distribution with attribution of the entire paper or of individual
pages, in electronic or printed form, including some materials under non-CC-BY 4.0
licenses is hereby granted by the respective copyright owners.

optimization variables. Furthermore, an adaptive strategy is applied to adjust the maximum size of trust
regions based on the linearization error. Our contributions include:

• Incorporation of successive linearization within the trapezoidal collocation framework, aiding in
addressing path constraints, formulating linear cost, and maintaining a sparse structure.

• A feasible LP subproblem is formulated and can be efficiently solved. Multiple trust regions and
continuous updates of their sizes help reduce iterations.

• Application of this algorithm to generate feasible flight trajectories for a fixed-wing aircraft and a
multi-rotor, achieving effective results with minimal iterations.

The remainder of this paper is structured as follows: Sec. 2 delves into the preliminaries of the
trapezoidal collocation method. Sec. 3 delineates the formulation of the LP subproblem, followed
by Sec. 4, which elaborates on the iterative algorithm. In Sec. 5, we apply our method to real-world
applications involving a fixed-wing aircraft and a quadrotor, juxtaposing our results with leading trajectory
optimization software using trapezoidal collocation. Finally, Sec. 6 concludes the paper.

2 Preliminaries on Trapezoidal Collocation
Consider a continuous-time optimal problem in the following form:

min
𝒙,𝒖, 𝒑

𝐽 (𝒙, 𝒖, 𝒑) =
∫ 𝑡 𝑓

0
𝐿 (𝒙, 𝒖, 𝒑) 𝑑𝑡 + 𝜙

(
𝒙

(
𝑡 𝑓

)
, 𝒑

)
(1)

s.t.
𝑑𝒙

𝑑𝑡
= 𝒇 (𝒙, 𝒖, 𝒑) (2)

𝒙lb ≤ 𝒙 ≤ 𝒙ub, 𝒖lb ≤ 𝒖 ≤ 𝒖ub, 𝒑lb ≤ 𝒑 ≤ 𝒑ub (3)
𝑪 (𝒙, 𝒖, 𝒑) ≤ 0 (4)
𝝍 (𝒙, 𝒖, 𝒑) = 0 (5)

Here, 𝒙 ∈ R𝑛𝑥 is the state vector, 𝒖 ∈ R𝑛𝑢 is the control vector, 𝒑 ∈ R𝑛𝑝 represents the vector of
optimizable parameters, 𝐽 : R𝑛𝑥 × R𝑛𝑢 × R𝑛𝑝 → R is the scalar cost function. This cost is composed
of two parts: the Lagrange term 𝐿 : R𝑛𝑥 × R𝑛𝑢 × R𝑛𝑝 → R and the Mayer term 𝜙 : R𝑛𝑥 × R𝑛𝑝 → R.
The function 𝒇 : R𝑛𝑥 × R𝑛𝑢 × R𝑛𝑝 → R𝑛𝑥 characterizes the state dynamics. The inequality and equality
constraints are embodied by: 𝑪 : R𝑛𝑥×R𝑛𝑢×R𝑛𝑝 → R𝑛𝑐 and𝝍 : R𝑛𝑥×R𝑛𝑢×R𝑛𝑝 → R𝑛𝜓 . The optimization
variables comprise the time histories of states 𝒙(𝑡) and controls 𝒖(𝑡), as well as time-invariant parameters
𝒑. They are confined within a lower bound lb and an upper bound ub as in Eq. (3).

The Bolza form in Eq. (1) can represent objectives prevalent in trajectory generation tasks. The
Lagrange term 𝐿 can be transmuted into a Mayer term via the incorporation of a new state variable into
the system dynamics:

𝑑𝑥lag

𝑑𝑡
= 𝐿 (𝒙, 𝒖, 𝒑) , 𝑥lag (0) = 0 (6)

Subsequently, the integration of 𝐿 materializes as 𝑥lag
(
𝑡 𝑓

)
, which is a linear function of the extended

states 𝒙ext =
[
𝒙𝑇 , 𝑥lag

]𝑇 . Frequently, the Mayer term 𝜙 emerges as a linear function of the states 𝒙 and the
parameters 𝒑, for example, time duration 𝑡 𝑓 , flight distance, and fuel consumption. Incorporating these
considerations, we postulate that the objective in Eq. (1) can be expressed as a linear function:

𝐽 (𝒙, 𝒖, 𝒑) = 𝜙
(
𝒙ext

(
𝑡 𝑓

)
, 𝒑

)
(7)

It should be noted that the two cost functions in Eq. (1) and Eq. (7) are equivalent because the Lagrange
term is converted to 𝑥lag

(
𝑡 𝑓

)
. For the sake of brevity, we refer to 𝒙ext as 𝒙 in the remainder of this paper.

3Except where otherwise noted, content of this paper is licensed under
a Creative Commons Attribution 4.0 International License.

The reproduction and distribution with attribution of the entire paper or of individual
pages, in electronic or printed form, including some materials under non-CC-BY 4.0
licenses is hereby granted by the respective copyright owners.

Before the discretization of the continuous-time OCP, the physical time 𝑡 is transformed into the
normalized time 𝜏:

𝜏 =
𝑡 − 𝑡0
𝑡 𝑓 − 𝑡0

, 𝑡0 = 0 (8)

By establishing the initial time 𝑡0 as zero (without loss of generality) and treating the final time 𝑡 𝑓 as an
optimizable parameter, we derive the scaled state dynamics:

𝑑𝒙

𝑑𝜏
= 𝑡 𝑓 𝒇 (𝒙, 𝒖, 𝒑) = 𝒈 (𝒙, 𝒖 𝒑) (9)

For simplification in subsequent discussions, 𝑑𝒙
𝑑𝜏

will be referred to as ¤𝒙. Discretization of the trajectory
is conducted on the normalized time grid,

𝜏𝑘 ∈ [0, 1], 𝑘 = 1, ..., 𝑁, ℎ𝑘 = 𝜏𝑘+1 − 𝜏𝑘 > 0 (10)

where 𝑁 is the number of discretization nodes, ℎ𝑘 is the 𝑘-th time interval. The optimization variable
vector is composed of the following:

𝒛 =
[
𝒑𝑇 𝒙𝑇1 𝒙𝑇2 · · · 𝒙𝑇

𝑁
𝒖𝑇1 𝒖𝑇2 · · · 𝒖𝑇

𝑁

]𝑇
∈ R𝑛𝑧 (11)

where 𝑛𝑧 = 𝑛𝑝 + 𝑁 (𝑛𝑥 + 𝑛𝑢) designates the number of optimization variables. To ensure accurate
propagation of the nonlinear dynamics across the time grid, we apply the trapezoidal collocation rule:

CD𝑘+1 = 𝒙𝑘+1 − 𝒙𝑘 − ℎ𝑘
(¤𝒙𝑘 + ¤𝒙𝑘+1)

2
, 𝑘 = 1, ..., 𝑁 − 1 (12)

Here, CD𝑘+1 denotes the collocation defect, signifying the integration error within the [𝜏𝑘 , 𝜏𝑘+1] time
interval. The trapezoidal rule and the collocation defect are illustrated in Figure 1. All collocation defects
should be zero and are enforced as equality constraints in the optimization problem:

𝒆 =
[
CD𝑇

2 , · · · ,CD𝑇
𝑁

]𝑇
≜ 0 (13)

𝜏௞ିଵ 𝜏௞ 𝜏௞ାଵ

𝒙

𝒙௞

𝒙௞ାଵ𝒙௞ିଵ

𝒙̇௞ିଵ

𝒙̇௞

𝒙̇௞ାଵ
𝒙̇௞ + 𝒙̇௞ିଵ

2

CD௞

𝒙̇௞ + 𝒙̇௞ାଵ
2 CD௞ାଵ

ℎ௞ିଵ ℎ௞

State derivative

Quadratic curve

Collocation defect

Collocated state

Propagated state

Fig. 1 An illustration of the trapezoidal rule and the collocation defect

Overall, the OCP in Eq. (1) is discretized and transformed to the following NLP:

min
𝒛

𝐽 (𝒛) = 𝜙 (𝒙𝑁 , 𝒑) (14)

4Except where otherwise noted, content of this paper is licensed under
a Creative Commons Attribution 4.0 International License.

The reproduction and distribution with attribution of the entire paper or of individual
pages, in electronic or printed form, including some materials under non-CC-BY 4.0
licenses is hereby granted by the respective copyright owners.

s.t. 𝒛lb ≤ 𝒛 ≤ 𝒛ub (15)
𝒆 = 0 (16)
𝑪 (𝒛) ≤ 0 (17)
𝝍 (𝒛) = 0 (18)

3 Linear Subproblem Formulation
In this section, we employ the technique of successive linearization to transform nonlinear collocation

constraints, along with other path and point constraints, into linear ones. These linearized constraints
are subsequently integrated into the cost function via exact penalties. Furthermore, linear trust region
constraints are applied to the parameter vector 𝒑 and the state/control vectors at each collocation node.
By incorporating elastic variables, we formulate a feasible and bounded LP subproblem.

3.1 Optimization Variables and Cost Function
In the context of an iterative process, we assume an extant solution to the original problem, denoted as

𝒛(𝑗) . As illustrated in Fig. 2, we define the increments to this existing solution as optimization variables:

𝑑𝒛(𝑗) =
[
𝑑 𝒑 (𝑗)

𝑇
𝑑𝒙 (𝑗)1

𝑇
𝑑𝒙 (𝑗)2

𝑇
· · · 𝑑𝒙 (𝑗)

𝑁

𝑇
𝑑𝒖(𝑗)

1
𝑇

𝑑𝒖(𝑗)
2

𝑇
· · · 𝑑𝒖(𝑗)

𝑁

𝑇
]𝑇

(19)

The solution in the next iteration is:
𝒛(𝑗+1) = 𝒛(𝑗) + 𝑑𝒛(𝑗) (20)

Similarly, the cost function Eq. (14) can be written as:

𝐽 (𝑗+1) = 𝜙

(
𝒙 (𝑗)
𝑁

+ 𝑑𝒙 (𝑗)
𝑁
, 𝒑 (𝑗) + 𝑑 𝒑 (𝑗)

)
(21)

𝜏ଵ = 0 𝜏ே = 1

𝒑 ௝
𝒙ଵ

௝

𝒖ଵ
௝

𝒙ଶ
௝

𝒖ଶ
௝

𝒙ଷ
௝

𝒖ଷ
௝

𝒙ସ
௝

𝒖ସ
௝

𝒙ே
௝

𝒖ே
௝

𝒙ேିଵ
௝

𝒖ேିଵ
௝

𝒙ேିଶ
௝

𝒖ேିଶ
௝

𝒙௞
௝

𝒖௞
௝

𝜏ଶ 𝜏ଷ 𝜏ସ 𝜏௞ 𝜏ேିଶ 𝜏ேିଵ

𝑗-th solution

𝜏ଵ = 0 𝜏ே = 1

𝒑 ௝ାଵ
𝒙ଵ

௝ାଵ

𝒖ଵ
௝ାଵ

𝒙ଶ
௝ାଵ

𝒖ଶ
௝ାଵ

𝒙ଷ
௝ାଵ

𝒖ଷ
௝ାଵ

𝒙ସ
௝ାଵ

𝒖ସ
௝ାଵ

𝒙ே
௝ାଵ

𝒖ே
௝ାଵ

𝒙ேିଵ
௝ାଵ

𝒖ேିଵ
௝ାଵ

𝒙ேିଶ
௝ାଵ

𝒖ேିଶ
௝ାଵ

𝒙௞
௝ାଵ

𝒖௞
௝ାଵ

𝜏ଶ 𝜏ଷ 𝜏ସ 𝜏௞ 𝜏ேିଶ 𝜏ேିଵ

(𝑗 + 1)-th solution

𝒛 ௝

𝒛 ௝ାଵ

𝜏ଵ = 0 𝜏ே = 1

𝑑𝒑 ௝
𝑑𝒙ଵ

௝

𝑑𝒖ଵ
௝

𝑑𝒙ଶ
௝

𝑑𝒖ଶ
௝

𝑑𝒙ଷ
௝

𝑑𝒖ଷ
௝

𝑑𝒙ସ
௝

𝑑𝒖ସ
௝

𝑑𝒙ே
௝

𝑑𝒖ே
௝

𝑑𝒙ேିଵ
௝

𝑑𝒖ேିଵ
௝

𝑑𝒙ேିଶ
௝

𝑑𝒖ேିଶ
௝

𝑑𝒙௞
௝

𝑑𝒖௞
௝

𝜏ଶ 𝜏ଷ 𝜏ସ 𝜏௞ 𝜏ேିଶ 𝜏ேିଵ

increment

𝑑𝒛 ௝

+

=

Fig. 2 Discretization grid and optimization variables

5Except where otherwise noted, content of this paper is licensed under
a Creative Commons Attribution 4.0 International License.

The reproduction and distribution with attribution of the entire paper or of individual
pages, in electronic or printed form, including some materials under non-CC-BY 4.0
licenses is hereby granted by the respective copyright owners.

3.2 Successive Linearization of Nonlinear Dynamics
Within the iterative process, the nonlinear dynamics Eq. (9) at the (𝑗+1)-th iteration can be linearized

with respect to the 𝑗-th solution, yielding the following approximation:

¤𝒙 (𝑗+1) ≈ ¤𝒙 (𝑗) +
𝜕𝒈

(
𝒙 (𝑗) , 𝒖(𝑗) , 𝒑 (𝑗)

)
𝜕𝒙

(
𝒙 (𝑗+1) − 𝒙 (𝑗)

)
+
𝜕𝒈

(
𝒙 (𝑗) , 𝒖(𝑗) , 𝒑 (𝑗)

)
𝜕𝒖

(
𝒖(𝑗+1) − 𝒖(𝑗)

)
+
𝜕𝒈

(
𝒙 (𝑗) , 𝒖(𝑗) , 𝒑 (𝑗)

)
𝜕 𝒑

(
𝒑 (𝑗+1) − 𝒑 (𝑗)

)
= ¤𝒙 (𝑗) + 𝑮 (𝑗)

𝑥 𝑑𝒙 (𝑗) + 𝑮 (𝑗)
𝑢 𝑑𝒖(𝑗) + 𝑮 (𝑗)

𝑝 𝑑 𝒑 (𝑗)

(22)

where 𝑮 (𝑗)
𝑥 , 𝑮 (𝑗)

𝑢 , and 𝑮 (𝑗)
𝑝 denote gradients of 𝒈 concerning the states, controls, and parameters,

respectively. Based on Eq. (22), we examine two adjacent nodes at 𝜏𝑘 and 𝜏𝑘+1:

¤̂𝒙 (𝑗+1)
𝑘

= ¤𝒙 (𝑗)
𝑘

+ (𝑮𝑥) (𝑗)𝑘
𝑑𝒙 (𝑗)

𝑘
+ (𝑮𝑢) (𝑗)𝑘

𝑑𝒖(𝑗)
𝑘

+ (𝑮 𝑝) (𝑗)𝑘
𝑑 𝒑 (𝑗) (23)

¤̂𝒙 (𝑗+1)
𝑘+1 = ¤𝒙 (𝑗)

𝑘+1 + (𝑮𝑥) (𝑗)𝑘+1𝑑𝒙
(𝑗)
𝑘+1 + (𝑮𝑢) (𝑗)𝑘+1𝑑𝒖

(𝑗)
𝑘+1 + (𝑮 𝑝) (𝑗)𝑘+1𝑑 𝒑

(𝑗) (24)

Here the symbol ¤̂𝒙 denotes the linear approximation of ¤𝒙. By combing Eq. (12) with Eq. (23-24), the
collocation defect emanated from the approximated dynamics are:

ĈD
(𝑗+1)
𝑘+1 =𝒙 (𝑗+1)

𝑘+1 − 𝒙 (𝑗+1)
𝑘

− ℎ𝑘

(
¤̂𝒙 (𝑗+1)
𝑘

+ ¤̂𝒙 (𝑗+1)
𝑘+1

)
2

=𝒙 (𝑗)
𝑘+1 + 𝑑𝒙 (𝑗)

𝑘+1 − 𝒙 (𝑗)
𝑘

− 𝑑𝒙 (𝑗)
𝑘

− ℎ𝑘

2

[
¤𝒙 (𝑗)
𝑘

+ (𝑮𝑥) (𝑗)𝑘
𝑑𝒙 (𝑗)

𝑘
+ (𝑮𝑢) (𝑗)𝑘

𝑑𝒖(𝑗)
𝑘

+
(
𝑮 𝑝

) (𝑗)
𝑘

𝑑 𝒑 (𝑗)
]

− ℎ𝑘

2

[
¤𝒙 (𝑗)
𝑘+1 + (𝑮𝑥) (𝑗)𝑘+1 𝑑𝒙

(𝑗)
𝑘+1 + (𝑮𝑢) (𝑗)𝑘+1 𝑑𝒖

(𝑗)
𝑘+1 +

(
𝑮 𝑝

) (𝑗)
𝑘+1 𝑑 𝒑

(𝑗)
]

=𝒙 (𝑗)
𝑘+1 − 𝒙 (𝑗)

𝑘
− ℎ𝑘

2

(
¤𝒙 (𝑗)
𝑘

+ ¤𝒙 (𝑗)
𝑘+1

)
−

[
ℎ𝑘

2
(𝑮𝑥) (𝑗)𝑘

+ 𝑰

]
𝑑𝒙 (𝑗)

𝑘
− ℎ𝑘

2
(𝑮𝑢) (𝑗)𝑘

𝑑𝒖(𝑗)
𝑘

−
[
ℎ𝑘

2
(𝑮𝑥) (𝑗)𝑘+1 − 𝑰

]
𝑑𝒙 (𝑗)

𝑘+1 −
ℎ𝑘

2
(𝑮𝑢) (𝑗)𝑘+1 𝑑𝒖

(𝑗)
𝑘+1 −

ℎ𝑘

2

[(
𝑮 𝑝

) (𝑗)
𝑘

+
(
𝑮 𝑝

) (𝑗)
𝑘+1

]
𝑑 𝒑 (𝑗)

(25)

For notational clarity, we proffer the following abbreviations:

(𝑭𝑥𝑠) (𝑗)𝑘
=

[
ℎ𝑘

2
(𝑮𝑥) (𝑗)𝑘

+ 𝑰

]
(26)

(𝑭𝑥𝑒) (𝑗)𝑘
=

[
ℎ𝑘

2
(𝑮𝑥) (𝑗)𝑘+1 − 𝑰

]
(27)

(𝑭𝑢) (𝑗)𝑘
=

ℎ𝑘

2
(𝑮𝑢) (𝑗)𝑘

(28)

(𝑭𝑢) (𝑗)𝑘+1 =
ℎ𝑘

2
(𝑮𝑢) (𝑗)𝑘+1 (29)(

𝑭𝑝

) (𝑗)
𝑘

=
ℎ𝑘

2

[(
𝑮 𝑝

) (𝑗)
𝑘

+
(
𝑮 𝑝

) (𝑗)
𝑘+1

]
(30)

This facilitates the expression of Eq. (25) as:

ĈD
(𝑗+1)
𝑘+1 = CD(𝑗)

𝑘+1− (𝑭𝑥𝑠) (𝑗)𝑘
𝑑𝒙 (𝑗)

𝑘
− (𝑭𝑢) (𝑗)𝑘

𝑑𝒖(𝑗)
𝑘

− (𝑭𝑥𝑒) (𝑗)𝑘
𝑑𝒙 (𝑗)

𝑘+1− (𝑭𝑢) (𝑗)𝑘+1 𝑑𝒖
(𝑗)
𝑘+1−

(
𝑭𝑝

) (𝑗)
𝑘

𝑑 𝒑 (𝑗) (31)

6Except where otherwise noted, content of this paper is licensed under
a Creative Commons Attribution 4.0 International License.

The reproduction and distribution with attribution of the entire paper or of individual
pages, in electronic or printed form, including some materials under non-CC-BY 4.0
licenses is hereby granted by the respective copyright owners.

Notably, ĈD
(𝑗+1)
𝑘+1 is the predicted collocation defect at the (𝑗 + 1)-th iteration, while CD(𝑗)

𝑘+1 stands as
the true collocation defect at the 𝑗-th iteration. This equation indicates that the predicted collocation
defect at the next iteration is the sum of the true collocation defect at the current iteration and some linear
terms concerning the increments of states, control, and parameters. A matrix expression encompassing
all predicted collocation defects across the collocation nodes is established as:

©­­­«
ĈD

(𝑗+1)
2

ĈD
(𝑗+1)
3
...

ĈD
(𝑗+1)
𝑁

ª®®®¬ =

©­­­«
CD(𝑗)

2
CD(𝑗)

3
...

CD(𝑗)
𝑁

ª®®®¬−

©­­­«
(𝑭𝑝) (𝑗)1 (𝑭𝑥𝑠) (𝑗)1 (𝑭𝑥𝑒) (𝑗)2 0 ··· 0 0 (𝑭𝑢) (𝑗)1 (𝑭𝑢) (𝑗)2 0 ··· 0 0

(𝑭𝑝) (𝑗)2 0 (𝑭𝑥𝑠) (𝑗)2 (𝑭𝑥𝑒) (𝑗)3 ··· 0 0 0 (𝑭𝑢) (𝑗)2 (𝑭𝑢) (𝑗)3 ··· 0 0
...

...
...

...
. . .

...
...

...
...

...
. . .

...
...

(𝑭𝑝) (𝑗)𝑁−1 0 0 0 ··· (𝑭𝑥𝑠) (𝑗)𝑁−1 (𝑭𝑥𝑒) (𝑗)𝑁
0 0 0 ··· (𝑭𝑢) (𝑗)𝑁−1 (𝑭𝑢) (𝑗)𝑁

ª®®®¬
©­­­­­­­­­«

𝑑 𝒑 (𝑗)

𝑑𝒙
(𝑗)
1
...

𝑑𝒙
(𝑗)
𝑁

𝑑𝒖
(𝑗)
1
...

𝑑𝒖
(𝑗)
𝑁

ª®®®®®®®®®¬
(32)

The above matrix expression is simplified as:

𝒆(𝑗+1) = 𝒆(𝑗) − 𝑨(𝑗)𝑑𝒛(𝑗) ≜ 0 (33)

In this way, the nonlinear collocation defect constraints about 𝒛 in Eq. (16) are approximated by linear
equality constraints about 𝑑𝒛 in Eq. (33).

3.3 Other Constraints
The box bounds in Eq. (15) can be directly transformed to upper and lower bounds on 𝑑𝒛(𝑗):

𝒛lb − 𝒛(𝑗) ≤ 𝑑𝒛(𝑗) ≤ 𝒛ub − 𝒛(𝑗) (34)

The equality constraints in Eq. (18) are divided into a linear part 𝝍̄ (𝒛) and a nonlinear part 𝝍̃ (𝒛). This
nonlinear part undergoes linearization at 𝒛(𝑗):

𝝍̃
(
𝒛(𝑗+1)

)
≈

(
𝜕𝝍̃

𝜕𝒛

) (𝑗)
𝑑𝒛(𝑗) + 𝝍̃

(
𝒛(𝑗)

)
= 0 (35)

In a parallel fashion, the inequality constraints in Eq. (17) are also partitioned into a linear part 𝑪̄ (𝒛) and
a nonlinear part 𝑪̃ (𝒛). The latter is linearized at 𝒛(𝑗):

𝑪̃
(
𝒛(𝑗+1)

)
≈

(
𝜕𝑪̃

𝜕𝒛

) (𝑗)
𝑑𝒛(𝑗) + 𝑪̃

(
𝒛(𝑗)

)
≤ 0 (36)

3.4 Linear subproblem
Upon integrating these linear cost and constraints, we derive a linear subproblem as follows:

min
𝑑𝒛

𝐽 (𝑗+1) = 𝜙

(
𝒙 (𝑗)
𝑁

+ 𝑑𝒙 (𝑗)
𝑁
, 𝒑 (𝑗) + 𝑑 𝒑 (𝑗)

)
(37)

s.t. 𝒛lb − 𝒛(𝑗) ≤ 𝑑𝒛(𝑗) ≤ 𝒛ub − 𝒛(𝑗) (38)

7Except where otherwise noted, content of this paper is licensed under
a Creative Commons Attribution 4.0 International License.

The reproduction and distribution with attribution of the entire paper or of individual
pages, in electronic or printed form, including some materials under non-CC-BY 4.0
licenses is hereby granted by the respective copyright owners.

𝒆(𝑗) − 𝑨(𝑗)𝑑𝒛(𝑗) = 0 (39)

𝝍̄
(
𝑑𝒛(𝑗)

)
+ 𝝍̄

(
𝒛(𝑗)

)
= 0 (40)(

𝜕𝝍̃

𝜕𝒛

) (𝑗)
𝑑𝒛(𝑗) + 𝝍̃

(
𝒛(𝑗)

)
= 0 (41)

𝑪̄
(
𝑑𝒛(𝑗)

)
+ 𝑪̄

(
𝒛(𝑗)

)
≤ 0 (42)(

𝜕𝑪̃

𝜕𝒛

) (𝑗)
𝑑𝒛(𝑗) + 𝑪̃

(
𝒛(𝑗)

)
≤ 0 (43)

The accuracy of these linearized dynamics and constraints is contingent upon 𝑑𝒛(𝑗) being suffi-
ciently small. Linearized constraints may render the subproblem unbounded or yield an empty feasible
region [23]. To address the unboundedness issue, trust region constraints on 𝑑𝒛(𝑗) are employed. It
is a common practice in both NLP and SCP methods to use a single scalar trust region radius for all
optimization variables [15, 23]. Considering the inherent sparsity pattern of our problem, where states
and controls at temporally distant collocation nodes exhibit no interconnection, we allocate trust regions
distinctively for parameters and states/controls at individual discretization nodes. This multiple trust
regions scheme is illustrated in Fig. 3. These trust region constraints are written as follows:

𝑑 𝒑 (𝑗)

∞
≤ Δ

(𝑗)
𝑝 ≤ Δmax,

𝑑𝒙 (𝑗)
𝑘
, 𝑑𝒖(𝑗)

𝑘

∞
≤ Δ

(𝑗)
𝑘

≤ Δmax (44)

Here, the infinity norm is used because it introduces linear constraints. An upper bound Δmax is imposed
on all trust region sizes. The sizes of all trust regions are further written into a vector:

𝚫(𝑗) =
[
Δ
(𝑗)
𝑝 ,Δ

(𝑗)
1 ,Δ

(𝑗)
2 , · · · ,Δ(𝑗)

𝑁

]
(45)

This trust region vector is updated in each iteration—a facet to be elaborated upon.

𝜏ଵ = 0 𝜏ே = 1

𝑑𝒑 ௝
𝑑𝒙ଵ

௝

𝑑𝒖ଵ
௝

𝑑𝒙ଶ
௝

𝑑𝒖ଶ
௝

𝑑𝒙ଷ
௝

𝑑𝒖ଷ
௝

𝑑𝒙ସ
௝

𝑑𝒖ସ
௝

𝑑𝒙ே
௝

𝑑𝒖ே
௝

𝑑𝒙ேିଵ
௝

𝑑𝒖ேିଵ
௝

𝑑𝒙ேିଶ
௝

𝑑𝒖ேିଶ
௝

𝑑𝒙௞
௝

𝑑𝒖௞
௝

𝜏ଶ 𝜏ଷ 𝜏ସ 𝜏௞ 𝜏ேିଶ 𝜏ேିଵ

∆௣
௝

∆ଵ
௝

∆ଶ
௝

∆ଷ
௝

∆ସ
௝

∆௞
௝

∆ேିଶ
௝

∆ேିଵ
௝

∆ே
௝

Fig. 3 Multiple trust regions for the parameters, states, and controls

To rectify potential infeasibility caused by linearization, the linearized constraints are amalgamated
into the cost function via the following penalty:

𝐽
(𝑗+1)
aug =𝐽 (𝑗+1) + 𝛾

𝒆(𝑗) − 𝑨(𝑗)𝑑𝒛(𝑗)

1
+ 𝛾

(𝜕𝝍̃𝜕𝒛) (𝑗)
𝑑𝒛(𝑗) + 𝝍̃

(
𝒛(𝑗)

)

1

+ 𝛾

max

(
0,

(
𝜕𝑪̃

𝜕𝒛

) (𝑗)
𝑑𝒛(𝑗) + 𝑪̃

(
𝒛(𝑗)

))

1

(46)

8Except where otherwise noted, content of this paper is licensed under
a Creative Commons Attribution 4.0 International License.

The reproduction and distribution with attribution of the entire paper or of individual
pages, in electronic or printed form, including some materials under non-CC-BY 4.0
licenses is hereby granted by the respective copyright owners.

Here, the ℓ1 penalty is exact, which implies that for 𝛾 larger than a certain value, the local minimizer
of 𝐽 (𝑗+1) occurs with the local minimizer of 𝐽 (𝑗+1)

aug [15, p. 507]. Besides, to drive the linearization error
small, the trust region sizes are also penalized through an ℓ1 penalty term:

𝐽
(𝑗+1)
total = 𝐽

(𝑗+1)
aug + 𝛾Δ

𝚫(𝑗)

1
(47)

The weight 𝛾Δ should be much less than 1 to reduce trust region sizes without unduly prioritizing this
objective over the minimization of 𝐽 (𝑗+1)

aug .

We further apply the elastic variable strategy [15, p. 536][22] to reformulate the subproblem into the
subsequent form:

min
𝑑𝒛

𝐽 (𝑗+1) + 𝛾

[∑︁
(𝒗1 + 𝒘1) +

∑︁
(𝒗2 + 𝒘2) +

∑︁
𝒚
]
+ 𝛾Δ

∑︁
𝚫(𝑗) (48)

s.t. Eq. (38), (40), (42), (44) (49)
𝒗1, 𝒗2, 𝒘1, 𝒘2, 𝒚,𝚫

(𝑗) ≥ 0 (50)
𝒆(𝑗) − 𝑨(𝑗)𝑑𝒛(𝑗) = 𝒗1 − 𝒘1 (51)(
𝜕𝝍̃

𝜕𝒛

) (𝑗)
𝑑𝒛(𝑗) + 𝝍̃

(
𝒛(𝑗)

)
= 𝒗2 − 𝒘2 (52)(

𝜕𝑪̃

𝜕𝒛

) (𝑗)
𝑑𝒛(𝑗) + 𝑪̃

(
𝒛(𝑗)

)
≤ 𝒚 (53)

where 𝒗1 and 𝒘1 are artificial elastic variables for the linearized collocation defect constraints, 𝒗2 and 𝒘2
are elastic variables for other linearized equality constraints, 𝒚 is the elastic variable for the linearized
inequality constraints. The extended optimization variables of Problem (48) are:

𝒁 =

[
𝑑𝒛(𝑗)

𝑇
, 𝒗𝑇1 , 𝒘

𝑇
1 , 𝒗

𝑇
2 , 𝒘

𝑇
2 , 𝒚

𝑇 ,𝚫(𝑗)𝑇
]𝑇

(54)

The cost function and all equality and inequality constraints are linear functions about 𝒁; therefore,
Problem (48) is a linear programming problem.

4 Successive Linear Programming Algorithm
The preceding section formulates a feasible LP subproblem that approximates the original OCP.

After solving this subproblem, the reference trajectory is updated and re-linearized to develop a new
subproblem. We aspire to get a solution to the original OCP by solving a series of subproblems. This
section presents the comprehensive methodology to achieve this objective.

4.1 Trust Region Update
The trust region constraints are paramount to ensure the subproblem is bounded and feasible. Small

region sizes imply low linearization error but allow little progress in improving the current solution.
Conversely, large region sizes allow significant progress but reduce the confidence of obtaining a helpful
solution. By integrating the trust region sizes as optimization variables, as illustrated in Eq. (54), we
allow the linear programming solver to concurrently determine the optimal trust region sizes along with
other variables in a manner that minimizes the overall cost, as outlined in Eq. (48). There are two main
issues within this self-adaptive process of updating trust regions. First, there is a risk that the trust
regions may not converge, potentially perpetuating linearization errors. Second, the imposition of a
penalty on trust region sizes, denoted by 𝛾Δ

𝚫(𝑗)

1, may inadvertently shift the subproblem’s solution

9Except where otherwise noted, content of this paper is licensed under
a Creative Commons Attribution 4.0 International License.

The reproduction and distribution with attribution of the entire paper or of individual
pages, in electronic or printed form, including some materials under non-CC-BY 4.0
licenses is hereby granted by the respective copyright owners.

away from the local minimum of 𝐽 (𝑗+1) . To address these concerns, we implement a strategy where both
the maximum allowable size of the trust regions, Δmax, and the penalty weight, 𝛾Δ, are progressively
reduced to approach zero beyond a specified iteration threshold, 𝑗1:

Δ
(𝑗)
max = 𝛽

max(0, 𝑗1− 𝑗)
1 Δ

(0)
max (55)

𝛾
(𝑗)
Δ

= 𝛽
max(0, 𝑗1− 𝑗)
2 𝛾

(0)
Δ

(56)

The pivotal iteration, 𝑗1, is identified as a positive integer, setting a phase within which the linear solver is
encouraged to explore the local minimizer of 𝐽 (𝑗+1) . Following this phase, the gradual reduction of both
the trust region sizes and their associated penalty weight guides the solver toward attaining an optimal
local solution. The ratio 𝛽1 and 𝛽2 are scalars between 0 and 1; larger values are used to allow smooth
and gradual reduction of Δ(𝑗)

max and 𝛾
(𝑗)
Δ

.

In addition to the enforced decrement of the maximum trust region size as a function of iteration
number, the trust region is also permitted to expand or contract based on a defined measure of linearization
error. The measure, denoted as 𝜌(𝑗) , is calculated as the ratio of the actual reduction in the total cost to
the predicted reduction, where the total cost is a composite measure comprising both the actual cost, the
violation of constraints, and the trust region sizes.

𝐽
(𝑗+1)
total = 𝐽 (𝑗+1) + 𝛾

𝒆(𝑗+1)

1
+ 𝛾

𝝍̃ (
𝒛(𝑗+1)

)

1
+ 𝛾

max
(
0, 𝑪̃

(
𝒛(𝑗+1)

))

1
+ 𝛾Δ

𝚫(𝑗)

1
(57)

𝜌(𝑗) =
𝐽
(𝑗)
total − 𝐽

(𝑗+1)
total

𝐽
(𝑗)
total − 𝐽

(𝑗+1)
total

(58)

A value of 𝜌(𝑗) close to 1 indicates a small linearization error, warranting the expansion of the trust region.
In contrast, a small 𝜌(𝑗) necessitates a contraction of the trust region. This study adopts and modifies the
trust region update rule in Ref. [24], particularly adjusting the rule for instances when 𝜌(𝑗) < 0 to permit
further contraction of the trust region and allowing expansion only when the boundary of the trust region
is reached. The modified rule is:

Δ
(𝑗+1)
max =



max
(
𝛼0, 𝛼1 + 𝜂1𝜌

(𝑗)
)
Δ
(𝑗)
max, if 𝜌(𝑗) < 0[

𝛼1 + (1 − 𝛼1)
(
𝜌 (𝑗)

𝜂2

)2
]
Δ
(𝑗)
max, if 0 ≤ 𝜌(𝑗) < 𝜂2

Δ
(𝑗)
max, if 𝜌(𝑗) ≥ 𝜂2,

𝑑𝒛(𝑗)

∞ < Δ
(𝑗)
max𝛼3 + (𝛼2 − 𝛼3) 𝑒

−
(
𝜌(𝑗) −1
𝜂2−1

)2 Δ(𝑗)
max, if 𝜌(𝑗) ≥ 𝜂2,

𝑑𝒛(𝑗)

∞ = Δ
(𝑗)
max

(59)

In this study, we set 𝛼0 = 0.1, 𝛼1 = 0.5, 𝛼2 = 2, 𝛼3 = 1.01, 𝜂1 = 0.01, and 𝜂2 = 0.95. This update rule is
illustrated in Fig. 4, where the dotted green line denotes the case when 𝜌(𝑗) ≥ 𝜂2 and

𝑑𝒛(𝑗)

∞ < Δ
(𝑗)
max.

In this case, the maximum trust region size remains unchanged because it was not reached in the previous
iteration. The described strategy for updating trust regions aligns with the principle of standard rules [15].
A rigorous analysis of its convergence has not been included in this study.

4.2 Stopping Criteria
The following practical stopping criteria are applied, and the algorithm stops if any criterion is met:

1) The relative change of the actual cost satisfies:
��𝐽 (𝑗) − 𝐽 (𝑗+1) �� ≤ 𝜖opt

��𝐽 (𝑗) ��.
2) The maximum trust region size has shrunk to less than a predefined tolerance: Δ(𝑗)

max ≤ 𝜖Δ.

10Except where otherwise noted, content of this paper is licensed under
a Creative Commons Attribution 4.0 International License.

The reproduction and distribution with attribution of the entire paper or of individual
pages, in electronic or printed form, including some materials under non-CC-BY 4.0
licenses is hereby granted by the respective copyright owners.

-0.5 0 0.5 1 1.5

0.5

1

1.5

2

0.95

Fig. 4 Update rule for the maximum trust region size

3) The step size is lower than a predefined tolerance:

𝑑𝒛(𝑗)

∞ ≤ 𝜖Δ.

4) The maximum iteration number is reached.

4.3 Algorithm
The methodology of solving the original OCP via iterative resolution of LP subproblems is expounded

in Algorithm 1. User-defined parameters and their default values are listed in Table 1.

Table 1 A summary of the user-defined parameters for Algorithm 1

Parameter Meaning Note Default value

Δ
(0)
max initial maximum trust region Δ

(0)
max > 0 10

𝛾 penalty weight for linearized constraints 𝛾 > 1 100
𝛾Δ penalty weight for trust regions 0 < 𝛾Δ < 1 0.1
𝑗1 threshold iteration 𝑗1 > 1 6
𝛽1 Δmax shrinking ratio 0 < 𝛽1 < 1 0.7
𝛽2 𝛾Δ shrinking ratio 0 < 𝛽2 < 1 0.7
𝜖opt local optimality tolerance 0 < 𝜖opt < 1 1e-5
𝜖fea feasibility tolerance 0 < 𝜖fea < 1 1e-6
𝜖Δ step size and trust region size tolerance 0 < 𝜖Δ < 1 1e-5

5 Applications
This section presents the application of the above CSLP algorithm on two different flight systems.

The first is a three-degree-of-freedom fixed-wing aircraft model; the second is a six-degree-of-freedom
quadrotor model. Both models have nonlinear dynamics and are subject to nonlinear path constraints.
The performance of our proposed CSLP algorithm is compared with two other state-of-the-art trajec-
tory optimization toolboxes that also use the trapezoidal collocation scheme, namely, the OptimTraj
toolbox [25] and the FALCON.m toolbox [26].

11Except where otherwise noted, content of this paper is licensed under
a Creative Commons Attribution 4.0 International License.

The reproduction and distribution with attribution of the entire paper or of individual
pages, in electronic or printed form, including some materials under non-CC-BY 4.0
licenses is hereby granted by the respective copyright owners.

Algorithm 1 Collocation based Successive Linear Programming (CSLP) Algorithm

Require: 𝑁 , 𝛾, 𝛾Δ, Δ(0)
max, 𝛽1, 𝛽2, 𝜖opt, 𝜖fea, 𝜖Δ, 𝑗m.

1: Generate initial guess 𝒛(0)
2: for 𝑗 = 0, 1, 2, · · · , 𝑗𝑚 do

3: Calculate 𝒆(𝑗) , 𝑨(𝑗) ,
(
𝜕𝝍̃
𝜕𝒛

) (𝑗)
, 𝝍̃

(
𝒛(𝑗)

)
,
(
𝜕𝑪̃
𝜕𝒛

) (𝑗)
, and 𝑪̃

(
𝒛(𝑗)

)
.

4: Calculate Δ(𝑗)
max and 𝛾

(𝑗)
Δ

according to Eq. (55) and Eq. (56).
5: Set up the subproblem in Eq. (48).
6: Solve the subproblem in Eq. (48) and get the solution 𝑑𝒛(𝑗) .
7: Compute 𝜌(𝑗) as in Eq. (58).
8: Update Δ(𝑗+1)

max according to Eq. (59)
9: if 𝜌(𝑗) > 0.01 then

10: 𝒛(𝑗+1) = 𝒛(𝑗) + 𝑑𝒛(𝑗) ⊲ Accept the new solution
11: else
12: 𝒛(𝑗+1) = 𝒛(𝑗) ⊲ Keep the old solution
13: end if
14: Compute the local optimality measure 𝑜𝑝𝑡 =

��𝐽 (𝑗) − 𝐽 (𝑗+1) ��/��𝐽 (𝑗) ��
15: Compute the feasibility measure 𝑓 𝑒𝑎 =

𝒆(𝑗+1)

∞ +

𝝍 (
𝒛(𝑗+1)

)

∞
+

max
(
0,𝑪

(
𝒛(𝑗+1)

))

∞

16: if 𝑜𝑝𝑡 ≤ 𝜖opt and 𝑓 𝑒𝑎 ≤ 𝜖fea then
17: ExitFlag = 1 ⊲ The feasibility and the optimality tolerances are met
18: break
19: end if
20: if Δ 𝑗

max ≤ 𝜖Δ or

𝑑𝒛(𝑗)

∞ ≤ 𝜖Δ then

21: if 𝑓 𝑒𝑎 ≤ 𝜖fea then
22: ExitFlag = 2 ⊲ The step and feasibility tolerances are met
23: else
24: ExitFlag = 3 ⊲ The step tolerance is met, but the feasibility tolerance is not
25: end if
26: break
27: end if
28: if 𝑗 ≥ 𝑗𝑚 then
29: ExitFlag = 0 ⊲ Maximum number of iterations reached
30: break
31: end if
32: end for
33: Return 𝒛(𝑗+1) , 𝐽 (𝑗+1) , and ExitFlag.

12Except where otherwise noted, content of this paper is licensed under
a Creative Commons Attribution 4.0 International License.

The reproduction and distribution with attribution of the entire paper or of individual
pages, in electronic or printed form, including some materials under non-CC-BY 4.0
licenses is hereby granted by the respective copyright owners.

5.1 Fixed-wing Aircraft Flight Trajectory
The first example is the generation of time-minimum flight trajectory for a fixed-wing aircraft [27].

The following point-mass model describes the nonlinear flight dynamics:

¤𝑋 = 𝑉 cos 𝜒 cos 𝛾 (60)
¤𝑌 = 𝑉 sin 𝜒 cos 𝛾 (61)
¤𝐻 = 𝑉 sin 𝛾 (62)

¤𝑉 =
1
𝑚

(𝑇 − 𝐷 − 𝑚𝑔 sin 𝛾) (63)

¤𝜒 =
1

𝑚𝑉 cos 𝛾
𝐿 sin 𝜇 (64)

¤𝛾 =
1
𝑚𝑉

(𝐿 − 𝑚𝑔 cos 𝛾) (65)

with the aerodynamic forces and the thrust modeled as:

𝐿 =
1
2
𝜌𝑉2𝑆𝐶𝐿 =

1
2
𝜌𝑉2𝑆 (𝐶𝐿0 + 𝐶𝐿𝛼𝛼) (66)

𝐷 =
1
2
𝜌𝑉2𝑆𝐶𝐷 =

1
2
𝜌𝑉2𝑆

(
𝐶𝐷0 + 𝑘𝐶2

𝐿

)
(67)

𝑇 = 𝛿𝑇𝑇max (68)

where the wing area 𝑆 = 110 m2, mass 𝑚 = 70000 kg, 𝐶𝐿0 = 0.2, 𝐶𝐿𝛼 = 4 rad−1, 𝐶𝐷0 = 0.03, 𝑘 = 0.04,
and 𝑇max = 0.3𝑚𝑔. The model subsumes six states: horizontal position 𝑋 , lateral position 𝑌 , vertical
position 𝐻, airspeed 𝑉 , course angle 𝜒, and climb angle 𝛾. The control inputs are throttle command 𝛿𝑇 ,
angle of attack 𝛼, and bank angle 𝜇. The normal load factor 𝑛𝑧 = 𝐿

𝑚𝑔
is a nonlinear output.

The aircraft mission is to fly from the waypoint (𝑥, 𝑦, 𝑧) = (0, 0, 1000m) to (5000m, 2000m, 1000m),
leaving and arriving the waypoints with a speed of 100 m/s and zero course and climb angles. During
the flight, the states, controls, and output are limited. All constraints are summarized below:

𝑋 (0) = 𝑌 (0) = 0, 𝐻 (0) = 1000 m, 𝑉 (0) = 100 m/s, 𝜒(0) = 𝛾(0) = 0 (69)
𝑋 (𝑡 𝑓) = 5000 m, 𝑌 (𝑡 𝑓) = 2000 m, 𝐻 (𝑡 𝑓) = 1000 m, 𝑉 (𝑡 𝑓) = 100 m/s, 𝜒(𝑡 𝑓) = 𝛾(𝑡 𝑓) = 0 (70)

80 m/s ≤ 𝑉 ≤ 120 m/s, − 𝜋

6
≤ 𝛾 ≤ 𝜋

6
, 0 ≤ 𝛼 ≤ 𝜋

12
, 0 ≤ 𝛿𝑇 ≤ 1, − 𝜋

6
≤ 𝜇 ≤ 𝜋

6
(71)

0.8 ≤ 𝑛𝑧 ≤ 1.2 (72)

We adopted a collocation grid with 𝑁 = 31 equidistant nodes and the default parameters in Table 1 for
the CSLP algorithm. The linprog solver [28] was used to solve the linear subproblems. The FALCON.m
and OptimTraj toolboxes were used to generate reference solutions for comparative analysis. Both
toolboxes formulate NLPs employing the trapezoidal collocation method and solve them through the
IPOPT solver [29] and the fmincon solver [28], respectively. The same scaling to optimization variables
was applied when deriving all three solutions.

Figure 5 and Fig. 6 depict the trajectories devised by our CSLP algorithm alongside the reference
solutions. All solutions complied with the prescribed constraints on states and controls. During the initial
ten seconds, the aircraft performed a dive while accelerating to its maximum velocity𝑉 = 120 m/s using
maximum thrust and concurrently executed a right bank to 𝜇 = 30◦. This was followed by approximately
25 seconds, during which the aircraft maintained its velocity with minimal throttle. In the final phase,
the aircraft leveraged its kinetic energy to ascend back to its original altitude while decelerating to its
initial velocity and executing a left bank to 𝜇 = −30◦, before finally leveling its wings. The two reference

13Except where otherwise noted, content of this paper is licensed under
a Creative Commons Attribution 4.0 International License.

The reproduction and distribution with attribution of the entire paper or of individual
pages, in electronic or printed form, including some materials under non-CC-BY 4.0
licenses is hereby granted by the respective copyright owners.

solutions were almost identical, while the CSLP solution showed some unsteady lateral motions during
the constant-speed phase but less altitude loss.

Figure 7 details the progression of cost values and collocation errors across iterations. The CSLP
algorithm solution exhibits a slightly prolonged duration (𝑡 𝑓 = 47.27 s) compared to the reference
solutions (𝑡 𝑓 = 47.22 s), yet achieves convergence to a feasible solution in merely five iterations, in
contrast to 72 and 101 iterations required by FALCON.m and OptimTraj, respectively. Figure 8 illustrates
the progression of the CSLP algorithm: the first subplot records the actual and total cost values 𝐽 (𝑗) and
𝐽
(𝑗)
total, and the second subplot records the linearization error measure 𝜌(𝑗) and the maximum allowable trust

region sizeΔ(𝑗)
max. The initial trust regions are set to 5, an overlarge value resulting in a poor approximation

of the original OCP, as evidenced by the rise in 𝐽
(1)
total and a negative 𝜌(1) of -1.066. Consequently, the

maximum trust region size was reduced to 2.233 in the second iteration, according to the update rule in
Eq. (59). Subsequent iterations demonstrated continuous reductions in 𝐽total and a 𝜌 value approaching 1,
indicating minimal linearization error. The third subplot details the trust region vector 𝚫(𝑗) , with the first
element being the trust region size for 𝑑𝑡 𝑓 and the remaining 31 elements corresponding to the sizes at all
collocation nodes. The optimal trust region sizes vary, particularly at the initial and final nodes. Although
the maximum allowable trust region size Δmax remained nearly unchanged in the last three iterations, the
actual trust region vector 𝚫 exhibits a gradual decrease among all collocation nodes to the order of 10−5.
This gradual decrease is not driven by the update rule for Δmax but through the penalization of 𝚫 in the
cost function. Therefore, our CSLP algorithm provides more flexibility to expedite convergence across
iterations.

Fig. 5 Minimum time trajectories of the fixed-wing aircraft

5.2 Quadrotor Flight Trajectory
The second example describes the generation of a control-minimum flight trajectory for a quadrotor.

This example is adapted from the OptimTraj toolbox [25]. The six-degree-of-freedom equations of
motion of the quadrotor are as follows:

¤𝑿𝐸 = 𝑽𝐸 (73)

¤𝚿 =


1 sin 𝜙 tan 𝜃 cos 𝜙 tan 𝜃
0 cos 𝜙 − sin 𝜙

0 sin 𝜙

cos 𝜃
cos 𝜙
cos 𝜃

 𝝎 (74)

¤𝑽𝐸 = 𝑀𝐸𝐵

∑4
𝑖=1 𝑭𝑖

𝑚
+


0
0
𝑔

 (75)

14Except where otherwise noted, content of this paper is licensed under
a Creative Commons Attribution 4.0 International License.

The reproduction and distribution with attribution of the entire paper or of individual
pages, in electronic or printed form, including some materials under non-CC-BY 4.0
licenses is hereby granted by the respective copyright owners.

0 10 20 30 40 50
0

2000

4000

6000

0 10 20 30 40 50
0

1000

2000

FALCON.m

OptimTraj

CSLP

0 10 20 30 40 50
850

900

950

1000

0 10 20 30 40 50
100

110

120

0 10 20 30 40 50
0

20

40

0 10 20 30 40 50
-5

0

5

10

0 10 20 30 40 50

6

8

10

0 10 20 30 40 50
0

0.5

1

0 10 20 30 40 50

-20

0

20

0 10 20 30 40 50
0.8

1

1.2

Fig. 6 Time histories of states and controls of the fixed-wing aircraft

¤𝝎 =

∑4
𝑖=1 𝑴𝑖 − 𝝎 × 𝑰𝝎

𝑰
(76)

where 𝑿𝐸 is the three-dimensional location, 𝚿 = [𝜙, 𝜃, 𝜓]𝑇 is the Euler attitude, 𝑽𝐸 = [𝑢𝐸 , 𝑣𝐸 , 𝑤𝐸]𝑇 is
the velocity vector in the NED frame, 𝝎 = [𝑝, 𝑞, 𝑟]𝑇 is the angular rate vector in the body frame, 𝑀𝐸𝐵 is
the transformation matrix from the body frame to the NED frame, 𝑰 is the inertial matrix, 𝑭𝑖 and 𝑴𝑖 are
the force and moment vector generated by each rotor, which are calculated as follows:

𝑭𝑖 =


0
0
𝑓𝑖

 , 𝑴𝑖 =


0
0
𝑓𝑖

 × 𝒓𝑖 +

0
0
𝜏𝑖

 (77)

𝑓𝑖 = 𝑐 𝑓 𝜌𝑎𝜔
2
𝑖 𝑑

4, 𝜏𝑖 = 𝑠𝑖𝑔𝑛(𝜔𝑖)𝑐𝜏𝜌𝑎𝜔2
𝑖 𝑑

5 (78)

Here, 𝒓𝑖 is the moment arm of the rotor to the center of gravity of the quadrotor, 𝑐 𝑓 is the thrust coefficient,
𝑐𝜏 is the torque coefficient, 𝜌𝑎 is the air density, 𝑑 is the rotor diameter. The state vector of quadrotor
model is 12-dimensional, composed by 𝑿𝐸 , 𝚿, 𝑽𝐸 , and 𝝎, the control vector is 𝒖 =

[
𝜔1
𝜔m

,
𝜔2
𝜔m

,
𝜔3
𝜔m

,
𝜔4
𝜔m

]𝑇
,

which 𝜔m = 10000 rev/min is the maximum rotor rotational speed.

The designated flight task for the quadrotor is to reach the destination 𝑿𝐸 = [10 m, 0, 10 m]𝑇 from
the origin 𝑿𝐸 = [0, 0, 10 m]𝑇 . The quadrotor is expected to commence and conclude its journey with

15Except where otherwise noted, content of this paper is licensed under
a Creative Commons Attribution 4.0 International License.

The reproduction and distribution with attribution of the entire paper or of individual
pages, in electronic or printed form, including some materials under non-CC-BY 4.0
licenses is hereby granted by the respective copyright owners.

0 20 40 60 80 100 120
40

42

44

46

48

50

52

54

56

0 20 40 60 80 100 120
10

-10

10
-8

10
-6

10
-4

10
-2

10
0

FALCON.m

OptimTraj

CSLP

Fig. 7 Comparison of costs and collocation errors in the iterative solutions of aircraft trajectory

zero velocities and angular rates. Each rotor’s rotational speed is limited between zero and 𝜔m. A sphere
obstacle with a radius of 1 is centered at [5, 0, 10 m]𝑇 , and the quadrotor must clear it. With this mission
and constraints, we seek a flight trajectory that minimizes the total control effort defined by:

𝐽 =

∫ 𝑡 𝑓

0

1
2
𝒖𝑇𝒖 (79)

To enable the formulation of a linear subproblem, a new state 𝑄 is introduced as in Eq. (6):

𝑑𝑄

𝑑𝑡
=

1
2
𝒖𝑇𝒖, 𝑄 (𝑡 = 0) = 0 (80)

The cost in Eq. (79) is equivalent to 𝐽 = 𝑄
(
𝑡 = 𝑡 𝑓

)
= 𝑄 (𝜏 = 1), which is a linear function of the extended

state vector.

To generate the trajectory using the CSLP algorithm, we adopted 𝑁 = 21 collocation nodes, set
𝛾Δ = 0.05, and applied other parameters as outlined in their default settings in Table 1. Reference
trajectories were obtained using FALCON.m and OptimTraj. All trajectories are compared in Fig. 9, and
their time histories of states and controls are recorded in Fig. 10. Given the quadrotor’s high degree of
freedom, these trajectories exhibit some variation. In all scenarios, the quadrotor successfully cleared
the spherical obstacle; the trajectories from FALCON.m and OptimTraj closely approached the sphere’s
surface, whereas the CSLP trajectory attained a higher altitude and demonstrated more frequent lateral
and directional motions.

Figure 11 displays the cost values and collocation errors throughout the iterative process. Similarly to
the fixed-wing aircraft example, the CSLP algorithm solution exhibits a marginally sub-optimal minimum
control cost (𝑄(𝑡 𝑓) = 3.058) compared to the reference solutions (𝑄(𝑡 𝑓) = 3.00). Yet, it achieves
convergence to a feasible solution in 10 iterations, compared to the 77 and 272 iterations necessitated by
FALCON.m and OptimTraj, respectively. The progression of the CSLP algorithm, depicted in Figure 8,
reveals notable convergence characteristics. In the initial two iterations, 𝐽total dropped significantly, but
𝜌 was below 0.95 (0.586 and 0.312 respectively), prompting a reduction in the maximum trust region
size Δmax. In the third iteration, 𝐽total increased from 1733 to 2245, resulting in a 𝜌 value of -0.2961,
hence the trust region radius was further reduced. During the sixth and seventh iterations, the 𝜌 values
ranged between 0.95 and 1, indicative of minimal linearization error; however, the maximum trust region
size Δmax remained unchanged as the step size ∥𝑑𝒛∥∞ did not surpass the trust region radius. As in the
previous example, although the maximum allowable trust region remained relatively stable in the latter
iterations, the trust regions applied in the actual subproblems demonstrated a progressive decrease to
10−5.

16Except where otherwise noted, content of this paper is licensed under
a Creative Commons Attribution 4.0 International License.

The reproduction and distribution with attribution of the entire paper or of individual
pages, in electronic or printed form, including some materials under non-CC-BY 4.0
licenses is hereby granted by the respective copyright owners.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

200

400

600

800

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-2

0

2

4

6

0 5 10 15 20 25 30 35

10
-5

10
0

Fig. 8 Costs, 𝜌, Δmax, and 𝚫 in the iterative solutions of aircraft trajectory

5.3 Result Discussion

5.3.1 Computation Efforts
The two case studies presented in this section demonstrate the effectiveness of the CSLP trajectory

generation algorithm developed in this work. This algorithm can generate flight trajectories that comply
with nonlinear flight dynamics and path constraints by iteratively solving a limited number of linear
programming subproblems. Although the trajectories generated by the CSLP algorithm exhibit slight sub-
optimality in the optimization objectives—approximately 0.1% and 1.9% sub-optimality in the respective
applications—they require significantly fewer iterations compared to two state-of-the-art toolboxes that
also use the trapezoidal collocation discretization. Furthermore, the computational efficiency of the three
approaches was evaluated on a laptop equipped with an AMD Ryzen 5 3500U CPU and 8GB RAM. The
results, detailed in Table 2, indicate that the CSLP algorithm reduces the number of iterations required
and significantly decreases the computation time. This efficiency is further enhanced when employing a
commercial linear programming solver such as Gurobi [30]. The CSLP algorithm was implemented in
MATLAB, leveraging its user-friendly interface for code development and testing. For future work, we
plan to translate the code into a general-purpose programming language to optimize execution speed and
resource management.

5.3.2 Effect of Trust Region Penalty Weight
When constructing the linear subproblem in this paper, the sizes of the distributed trust regions are

integrated into the cost function via the weight 𝛾Δ. This penalty term aims to reduce the deviation of the
subproblem’s solution from the reference solution, thereby controlling the linearization error. It must be

17Except where otherwise noted, content of this paper is licensed under
a Creative Commons Attribution 4.0 International License.

The reproduction and distribution with attribution of the entire paper or of individual
pages, in electronic or printed form, including some materials under non-CC-BY 4.0
licenses is hereby granted by the respective copyright owners.

Fig. 9 Minimum control trajectories of the quadrotor

0 1 2 3
0

5

10

0 1 2 3
-0.2

0

0.2

0 1 2 3
10

10.5

11

0 1 2 3

-2

0

2

4

0 1 2 3

-50

0

50

0 1 2 3
-10

0

10

0 1 2 3

0

2

4

6

0 1 2 3

-2

0

2

0 1 2 3

-50

0

50

0 1 2 3
-200

0

200

0 1 2 3

-50

0

50

0 1 2 3
0

0.5

1

0 1 2 3
0

0.5

1

0 1 2 3
0

0.5

1

0 1 2 3
0

0.5

1

0 1 2 3
-0.5

0

0.5

Fig. 10 Time histories of states and controls of the quadrotor

acknowledged, however, that this penalty term modifies the original cost function. This modification can
result in sub-optimal solutions compared to the theoretical optimal values, as demonstrated in the two
applications discussed in this paper.

To further investigate the influence of the weight 𝛾Δ on both convergence and sub-optimality, we
consider the case of quadrotor trajectory generation. We recorded the iterative solution process under four
weight coefficients: 0.01, 0.05, 0.1, and 0.5. The resulting cost values and collocation errors are shown in
Fig. 13. Analysis reveals that larger weights 𝛾Δ expedite the convergence of the iterative process. However,
they also tend to increase the sub-optimality of the solution. Consequently, preliminary experiments are
recommended to fine-tune the weight when adapting the CSLP algorithm presented in this paper for other
flight trajectory generation tasks. In practical applications, a higher weight is advisable as the priority
often shifts towards ensuring feasible flight trajectories over achieving absolute performance optimality.

18Except where otherwise noted, content of this paper is licensed under
a Creative Commons Attribution 4.0 International License.

The reproduction and distribution with attribution of the entire paper or of individual
pages, in electronic or printed form, including some materials under non-CC-BY 4.0
licenses is hereby granted by the respective copyright owners.

0 50 100 150 200 250 300
2

3

4

5

6

7

8

9

10

0 50 100 150 200 250 300
10

-10

10
-5

10
0

FALCON.m

OptimTraj

CSLP

Fig. 11 Costs and collocation errors in the iterative process

0 1 2 3 4 5 6 7 8 9 10

0

2000

4000

6000

0 1 2 3 4 5 6 7 8 9 10

0

2

4

6

0 5 10 15 20 25

10
-5

10
0

Fig. 12 Costs, 𝜌, Δmax, and 𝚫 in the iterative solutions of quadrotor trajectory

6 Conclusion
This study has developed a method integrating successive linear programming into a collocation

framework to tackle non-convex trajectory generation challenges. Observing that many trajectory gen-
eration tasks involve linear objectives, we strategically linearize nonlinear collocation constraints and
path constraints around a reference trajectory, thus creating a linear programming subproblem. This
subproblem is resolved iteratively, allowing for continuous refinement of the trajectory. We incorporate
linearized constraints into the cost function to address potential infeasibility issues using exact penalty
functions. Distributive trust region constraints over parameters and states/controls at all collocation nodes
are introduced to ensure the subproblem is unbounded and is a good approximation of the original OCP.
These trust regions are implemented as linear inequality constraints in the subproblem. We also penalize
the sizes of these trust regions in the cost function via a small weight. Furthermore, a variant of the

19Except where otherwise noted, content of this paper is licensed under
a Creative Commons Attribution 4.0 International License.

The reproduction and distribution with attribution of the entire paper or of individual
pages, in electronic or printed form, including some materials under non-CC-BY 4.0
licenses is hereby granted by the respective copyright owners.

Table 2 Computation time required in the two trajectory generation tasks with different solvers

FALCON.m OptimTraj CSLP with matlab linprog CSLP with gorubi linprog

Aircraft 5.01 s 14.01 s 0.74 s 0.37 s
Quadrotor 12.23 s 19.22 s 2.86 s 1.35 s

0 5 10 15 20 25

0

2

4

6

8

10

0 5 10 15 20 25

10
-10

10
-5

10
0

Fig. 13 Costs and collocation errors in quadrotor trajectory iterations under different weight 𝛾Δ

classical trust-region update rule is applied to adaptively adjust the maximum allowable size of these
trust regions in each iteration according to the quantitative measure of linearization error.

Applications of this algorithm to a fixed-wing aircraft and a quadrotor have substantiated its com-
petence. When juxtaposed with state-of-the-art collocation-based toolboxes, our algorithm generates
sub-optimal trajectories. Still, it exhibits rapid convergence to feasibility and less computational ef-
fort, which is crucial for real-world applications. Tuning trust region penalty weight offers flexibility
to balance solution sub-optimality and convergence speed. The code for the CSLP algorithm and two
examples presented in this study is available at https://github.com/lenleo1/Colloc_SLP.git.
Future studies could extend the research to other types of aerial vehicles and to multi-phase trajectory
generation tasks.

Acknowledgments
The authors would like to thank Felix Schweighofer for his instruction on the FALCON.m toolbox.

Zhidong Lu acknowledges the financial support from the Graduate School of the Technical University of
Munich.

References
[1] Jennifer N Wilburn, Mario G Perhinschi, and Brenton K Wilburn. Implementation of composite clothoid

paths for continuous curvature trajectory generation for uavs. In AIAA Guidance, Navigation, and Control
(GNC) Conference, page 5230, 2013. DOI: 10.2514/6.2013-5230.

[2] Mark Owen, Randal W. Beard, and Timothy W. McLain. Implementing Dubins Airplane Paths on Fixed-
Wing UAVs*, pages 1677–1701. Springer Netherlands, Dordrecht, 2015. ISBN: 978-90-481-9707-1.
DOI: 10.1007/978-90-481-9707-1_120.

[3] Javier Garcia-Heras, Manuel Soler, and Francisco J Saez. Collocation methods to minimum-fuel trajectory
problems with required time of arrival in atm. Journal of Aerospace Information Systems, 13(7):243–265,
2016. DOI: 10.2514/1.I010401.

20Except where otherwise noted, content of this paper is licensed under
a Creative Commons Attribution 4.0 International License.

The reproduction and distribution with attribution of the entire paper or of individual
pages, in electronic or printed form, including some materials under non-CC-BY 4.0
licenses is hereby granted by the respective copyright owners.

https://github.com/lenleo1/Colloc_SLP.git
https://doi.org/10.2514/6.2013-5230
https://doi.org/10.1007/978-90-481-9707-1_120
https://doi.org/10.2514/1.I010401

[4] Moritz Diehl, Hans Georg Bock, Holger Diedam, and P-B Wieber. Fast direct multiple shooting algorithms
for optimal robot control. Fast motions in biomechanics and robotics: optimization and feedback control,
pages 65–93, 2006. DOI: 10.1007/978-3-540-36119-0_4.

[5] Behçet Açıkmeşe and Lars Blackmore. Lossless convexification of a class of optimal control problems with
non-convex control constraints. Automatica, 47(2):341–347, 2011. DOI: j.automatica.2010.10.037.

[6] Behçet Açıkmeşe, John M Carson, and Lars Blackmore. Lossless convexification of nonconvex control bound
and pointing constraints of the soft landing optimal control problem. IEEE Transactions on Control Systems
Technology, 21(6):2104–2113, 2013. DOI: 10.1109/TCST.2012.2237346.

[7] Xinfu Liu and Ping Lu. Solving nonconvex optimal control problems by convex optimization. Journal of
Guidance, Control, and Dynamics, 37(3):750–765, 2014. DOI: 10.2514/1.62110.

[8] Yuanqi Mao, Michael Szmuk, and Behçet Açıkmeşe. Successive convexification of non-convex optimal
control problems and its convergence properties. In 2016 IEEE 55th Conference on Decision and Control
(CDC), pages 3636–3641. IEEE, 2016. DOI: 10.1109/CDC.2016.7798816.

[9] Zhenbo Wang and Ye Lu. Improved sequential convex programming algorithms for entry trajectory optimiza-
tion. Journal of Spacecraft and Rockets, 57(6):1373–1386, 2020. DOI: 10.2514/1.A34640.

[10] Haichao Hong, Arnab Maity, and Florian Holzapfel. Free final-time constrained sequential quadratic
programming–based flight vehicle guidance. Journal of Guidance, Control, and Dynamics, 44(1):181–189,
2021. DOI: 10.2514/1.G004874.

[11] Haichao Hong, Patrick Piprek, Matthias Gerdts, and Florian Holzapfel. Computationally efficient trajectory
generation for smooth aircraft flight level changes. Journal of Guidance, Control, and Dynamics, 44(8):1532–
1540, 2021. DOI: 10.2514/1.G005529.

[12] Zhidong Lu, Haichao Hong, and Florian Holzapfel. Directional flight envelope prediction based on convex
optimization. In AIAA Scitech 2022 Forum, page 1398, 2022. DOI: 10.2514/6.2022-1398.

[13] Stephen P Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.
DOI: 10.1017/CBO9780511804441.

[14] Riccardo Bonalli, Abhishek Cauligi, Andrew Bylard, and Marco Pavone. Gusto: Guaranteed sequential
trajectory optimization via sequential convex programming. In 2019 International conference on robotics
and automation (ICRA), pages 6741–6747. IEEE, 2019. DOI: 10.1109/ICRA.2019.8794205.

[15] Jorge Nocedal and Stephen J Wright. Numerical optimization. Springer, 1999. ISBN: 0-387-30303-0.

[16] Philipp Foehn, Angel Romero, and Davide Scaramuzza. Time-optimal planning for quadrotor waypoint flight.
Science Robotics, 6(56):eabh1221, 2021. DOI: 10.1126/scirobotics.abh1221.

[17] Xiang Fang, Neng Wan, Hamidreza Jafarnejadsani, Donglei Sun, Florian Holzapfel, and Naira Hovakimyan.
Emergency landing trajectory optimization for fixed-wing uav under engine failure. In AIAA Scitech 2019
Forum, page 0959, 2019. DOI: 10.2514/6.2019-0959.

[18] Nguyen X Vinh. Optimal trajectories in atmospheric flight. Space mankind’s fourth environment, pages
449–468, 1982.

[19] Zhidong Lu, Haichao Hong, Johannes Diepolder, and Florian Holzapfel. Maneuverability set estimation and
trajectory feasibility evaluation for evtol aircraft. Journal of Guidance, Control, and Dynamics, 46(6):1184–
1196, 2023. DOI: 10.2514/1.G007109.

[20] Christoph Krammer, Felix Schweighofer, Daniel Gierszewski, Simon Scherer, Tuğba Akman, Haichao Hong,
and Florian Holzapfel. Requirements-based generation of optimal vertical takeoff and landing trajectories for
electric aircraft. In 33rd Congress of the International Council of the Aeronautical Sciences (ICAS). ICAS,
2022.

21Except where otherwise noted, content of this paper is licensed under
a Creative Commons Attribution 4.0 International License.

The reproduction and distribution with attribution of the entire paper or of individual
pages, in electronic or printed form, including some materials under non-CC-BY 4.0
licenses is hereby granted by the respective copyright owners.

https://doi.org/10.1007/978-3-540-36119-0_4
https://doi.org/j.automatica.2010.10.037
https://doi.org/10.1109/TCST.2012.2237346
https://doi.org/10.2514/1.62110
https://doi.org/10.1109/CDC.2016.7798816
https://doi.org/10.2514/1.A34640
https://doi.org/10.2514/1.G004874
https://doi.org/10.2514/1.G005529
https://doi.org/10.2514/6.2022-1398
https://doi.org/10.1017/CBO9780511804441
https://doi.org/10.1109/ICRA.2019.8794205
https://doi.org/10.1126/scirobotics.abh1221
https://doi.org/10.2514/6.2019-0959
https://doi.org/10.2514/1.G007109

[21] Fernando Palacios-Gomez, L Lasdon, and Michael Engquist. Nonlinear optimization by successive linear
programming. Management science, 28(10):1106–1120, 1982.

[22] Jianzhong Zhang, Nae-Heon Kim, and L Lasdon. An improved successive linear programming algorithm.
Management science, 31(10):1312–1331, 1985.

[23] Danylo Malyuta, Taylor P Reynolds, Michael Szmuk, Thomas Lew, Riccardo Bonalli, Marco Pavone,
and Behçet Açıkmeşe. Convex optimization for trajectory generation: A tutorial on generating dynami-
cally feasible trajectories reliably and efficiently. IEEE Control Systems Magazine, 42(5):40–113, 2022.
DOI: 10.1109/MCS.2022.3187542.

[24] Jérome MB Walmag and Éric JM Delhez. A note on trust-region radius update. SIAM Journal on Optimization,
16(2):548–562, 2005. DOI: 10.1137/030602563.

[25] Matthew Kelly. An introduction to trajectory optimization: How to do your own direct collocation. SIAM
Review, 59(4):849–904, 2017. DOI: 10.1137/16M1062569.

[26] Matthias Rieck, Matthias Bittner, Benedikt Grüter, Johannes Diepolder, Patrick Piprek, Christoph Göttlicher,
Florian Schwaiger, Barzin Hosseini, Felix Schweighofer, Tuğba Akman, and Florian Holzapfel. Falcon.m
user guide, version 1.29, 2023. http://www.falcon-m.com.

[27] Florian Holzapfel, Felix Schweighofer, and Tuğba Akman. Lecture notes in practical course optimal control,
2022. https://www.fsd.ed.tum.de/teaching/pos/.

[28] Matlab optimization toolbox, 2020. The MathWorks, Natick, MA, USA. https://www.mathworks.com/
products/optimization.html.

[29] Andreas Wächter and Lorenz T Biegler. On the implementation of an interior-point filter line-search algorithm
for large-scale nonlinear programming. Mathematical programming, 106:25–57, 2006. DOI: 10.1007/s10107-
004-0559-y.

[30] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2024. https://www.gurobi.com.

22Except where otherwise noted, content of this paper is licensed under
a Creative Commons Attribution 4.0 International License.

The reproduction and distribution with attribution of the entire paper or of individual
pages, in electronic or printed form, including some materials under non-CC-BY 4.0
licenses is hereby granted by the respective copyright owners.

https://doi.org/10.1109/MCS.2022.3187542
https://doi.org/10.1137/030602563
https://doi.org/10.1137/16M1062569
http://www.falcon-m.com
https://www.fsd.ed.tum.de/teaching/pos/
https://www.mathworks.com/products/optimization.html
https://www.mathworks.com/products/optimization.html
https://doi.org/10.1007/s10107-004-0559-y
https://doi.org/10.1007/s10107-004-0559-y
https://www.gurobi.com

	Introduction
	Preliminaries on Trapezoidal Collocation
	Linear Subproblem Formulation
	Optimization Variables and Cost Function
	Successive Linearization of Nonlinear Dynamics
	Other Constraints
	Linear subproblem

	Successive Linear Programming Algorithm
	Trust Region Update
	Stopping Criteria
	Algorithm

	Applications
	Fixed-wing Aircraft Flight Trajectory
	Quadrotor Flight Trajectory
	Result Discussion
	Computation Efforts
	Effect of Trust Region Penalty Weight

	Conclusion

