
Rank one update-based efficient adaptive control
allocation for multicopter

Hangxu Li Research Associate, Technical University of Munich, Institute of Flight System Dy-
namics, 85748, Garching, Germany. hangxu.li@tum.de

Stephan Myschik Professor, Universität der Bundeswehr München, Institute for Aeronautical Engineer-
ing, 85577, Neubiberg, Germany. stephan.myschik@unibw.de

Haichao Hong Associate Professor, Shanghai Jiao Tong University, School of Aeronautics and As-
tronautics, 200240, Shanghai, China. haichao.hong@sjtu.edu.cn

Florian Holzapfel Professor, Technical University of Munich, Institute of Flight System Dynamics,
85748, Garching, Germany. florian.holzapfel@tum.de

ABSTRACT

This paper proposes an efficient rank one update-based adaptive control allocation (CA) that shows
satisfactory computational efficiency. A typical adaptive CA module includes parameter estimation
and CA parts. In this paper, the parameter estimation part uses a recursive least square (RLS)
filter to obtain an estimated CA matrix, and the CA module is designed based on the pseudo-
inverse method. Because of using the pseudo-inverse method to allocate pseudo commands from
the upstream controller, the singular value decomposition (SVD) of the CA matrix is required
in every time step. Completely decomposing the matrix by using SVD methods will waste too
much computational resources. Noticing that the estimated matrix is only perturbed by a rank
one matrix in the parameter update step of RLS, a rank one update method is integrated into
the RLS filter in this paper for updating SVD results of the estimated matrix without using SVD
methods. Benefited from the low computational complexity of the rank one update method, the
computational efficiency of the whole adaptive CA part is therefore enhanced. In the meantime, the
control performance will not be deteriorated by using the rank one update method. The proposed
rank one update-based adaptive CA is validated on a complex high-fidelity multicopter model and
shows satisfactory computation and control performance.

Keywords: Adaptive control allocation; Flight control; Rank one update; Multicopter controller design; Compu-
tational efficiency

Nomenclature

𝐺 = center of gravity
𝑅 = reference point
𝐵 = body-fixed frame
𝐶 = control frame
𝑂 = north-east-down frame

1Except where otherwise noted, content of this paper is licensed under
a Creative Commons Attribution 4.0 International License.

The reproduction and distribution with attribution of the entire paper or of individual
pages, in electronic or printed form, including some materials under non-CC-BY 4.0
licenses is hereby granted by the respective copyright owners.

EuroGNC
Navigation

ControlGuidance
2024Bristol, UK June 11th-13th

CEAS-GNC-2024-083

mailto:hangxu.li@tum.de
mailto:stephan.myschik@unibw.de
mailto:haichao.hong@sjtu.edu.cn
mailto:florian.holzapfel@tum.de

𝐸 = earth-centered-earth-fixed frame
𝝎 = angular rate
𝑝, 𝑞, 𝑟 = roll, pitch, and yaw rate
𝑰 = moment tensor
𝑴𝑝 = moment generated by rotors
𝚽 = Euler angle
Φ,Θ,Ψ = roll, pitch, and yaw angle
𝑽 = velocity
𝑭 = force
𝛀 = rotor speed
𝜔𝑛 = natural frequency
𝜁 = damping ratio
𝒇 = specific force
𝒈 = gravitational acceleration
𝑴 = rotation matrix
𝑇 = thrust
𝝂 = pseudo inputs
𝑩 = control effectiveness matrix
𝑩𝑐𝑎 = control allocation matrix
𝑼, 𝑺,𝑽 = singular value decomposition
𝚯 = parameters to be estimated
𝐽 = cost function
𝑫 = diagonal matrix

1 Introduction
Multicopter is becoming popular in many application scenarios because of its many advantages, like

vertical take-off and landing capability, etc. For example, in Refs. [1], it is used to help save wounded
soldiers in combat environments. Depending on different applications, multicopter controller design
has different requirements for tracking performance, gust alleviation capability, etc. In order to meet
these challenging requirements, researchers developed and implemented many advanced and powerful
techniques to augment baseline controllers, for example, dynamic inversion, gain scheduling, parameter
estimators, etc. Among these techniques, parameter estimators are often used to construct an adaptive
controller that is able to counter uncertainties [2–4].

An adaptive controller is a kind of controller with adjustable parameters and a mechanism for
adjusting the parameters [5], which is designed based on feedback of signals in a controlled system for
control adaptation to effectively handle system uncertainties [6, 7]. Along the development process,
different design methods for adaptive control come out. Model reference adaptive control uses the
Lyapunov function to derive adaptation law, which is then able to guarantee the stability of closed-loop
control systems [8–10]. The artificial neural network is also commonly used in designing adaptive
controllers [11–13]. Another way to design an adaptive controller is to use different kinds of adaptive
filters, like recursive least square (RLS) filter, Kalman filter, and so on, for providing baseline controller
required information. In Refs. [14–16], these filters are used to obtain estimated actuator effectiveness,
which is then exploited in baseline controller. If only parameters used in control allocation (CA) are
estimated, it can be called adaptive CA scheme [17]. This paper also employs such a scheme because of
its satisfactory performance and easy implementation. The RLS filter is chosen in the paper as the CA
matrix estimator because of its fast convergence and low computational complexity [18].

2Except where otherwise noted, content of this paper is licensed under
a Creative Commons Attribution 4.0 International License.

The reproduction and distribution with attribution of the entire paper or of individual
pages, in electronic or printed form, including some materials under non-CC-BY 4.0
licenses is hereby granted by the respective copyright owners.

In adaptive CA, while parameter estimation does not waste too much computation resources, allo-
cating pseudo commands usually contributes a lot to the workload of flight computer. There are mainly
two kinds of CA methods. One way to solve CA problem is by using optimization-based methods, like
the active-set method. When using these methods, the number of iterations required to reach termination
conditions is not determined and guaranteed [19]. In order to avoid such cases, another kind of CA
method, pseudo-inverse method, is chosen in this paper to design the CA module. In Refs. [20, 21],
redistributed scaling pseudo inverse-based CA together with null space transition technique is used and
therefore needs singular value decomposition (SVD) of CA matrix. Because of that, the CA part mainly
contributes to the computational load as in Ref. [20]. This problem is then investigated in this paper,
aiming to reduce calculation of designed adaptive CA.

The main contribution of this paper is a rank one update-based adaptive CA. The proposed adaptive
CA is used with a designed incremental model-based nonlinear dynamic inversion (INDI) baseline
controller for controlling the velocities of a multicopter. The adaptive CA includes mainly a parameter
estimation part and a CA part. Data from sensors and the actuator model are synchronized and then
filtered by a third-order filter, forming inputs for the RLS filter inputs, i.e., pseudo inputs and rotor
speeds. When estimating parameters, a common RLS filter can only compute CA matrix provided
aforementioned inputs. Then, decomposing the estimated CA matrix by using SVD methods is required
before implementing CA, which costs much calculation. In the traditional RLS, it is noticed that the
estimated CA matrix is updated every time step with a rank one perturbation, which is suitable for
implementing rank one update method. Therefore, this paper addresses the issue above by utilizing the
rank one update method, which offers a computationally much more efficient way to output the SVD
of the CA matrix, directly usable for calculating pseudo inverse. This route also eliminates the need
for an additional SVD solver. The SVD results can be employed for null space-related techniques like
null-space transition and excitation [4, 21], without compromising on control performance thanks to the
high numerical precision of the rank one update. CA part uses the pseudo-inverse method for its stability
and efficiency in calculation. Overall, the proposed rank one update-based adaptive CA approach reduces
computational complexity while maintaining high precision and performance.

3Except where otherwise noted, content of this paper is licensed under
a Creative Commons Attribution 4.0 International License.

The reproduction and distribution with attribution of the entire paper or of individual
pages, in electronic or printed form, including some materials under non-CC-BY 4.0
licenses is hereby granted by the respective copyright owners.

2 Plant Model

Fig. 1 Multicopter

A multicopter model is used in this paper for testing
designed rank one update-based adaptive controller, as in
Fig. 1. The over-actuated characteristic of this multicopter
enables it to serve as a valuable testbed for validating CA
related research.

2.1 Overview and coordinate system definition
of the multicopter used as testbed

The structure of the over-actuated multicopter used in
this paper is depicted in Fig. 1. A Flight computer and
different types of sensors are installed in the middle of the airframe. The center of gravity (G) coincides
with the reference point (R) which locates at the center of the airframe. Six arms of the airframe
are designed with intervals of 60 𝑑𝑒𝑔 and have the same length of 0.215𝑚. Rotors with identical
aerodynamics are mounted at the end of these arms with a height of 0.025𝑚. Rotors 1, 3, and 5 rotate
clockwise, while rotors 2, 4, and 6 rotate counterclockwise. Except for those geometric parameters, the
gross mass of multicopter is approximately 1.2 𝑘𝑔, and the moments of inertia along x-, y-, and z-axis
are approximately 10−2, 10−2, and 1.5 × 10−2 𝑘𝑔 · 𝑚2 respectively.

Several coordinate systems are defined and used in this paper for developing controllers. A body-fixed
frame (B) is defined as in Fig. 1, whose x-axis points in the direction of the angle bisector between the first
and sixth arms. The y-axis of this frame is aligned with the second arm and the z-axis is perpendicular
to the xy-plane. Besides, a control frame (C) is obtained through a rotation of the north-east-down (O)
frame around its 𝑧𝑂 axis with the yaw angle Ψ [20]. Origins of B-, C-, and O-frame are all located at the
reference point. In this paper, an earth-centered-earth-fixed frame (E) is used as an inertial frame.

2.2 Dynamics and kinematics of the multicopter
The dynamics of the aforementioned multicopter can be described by several differential equations.

In following equations, notation scheme like

(
1

3
2

) 4

5

������� 6

is used, where block 1 is the physical quantity,

block 2 is index, block 3 denotes the reference, block 4 means the reference frame, block 5 is the notation
frame, and block 6 is the type of this physical quantity. For example,

(
𝑽𝑅
𝐾

)𝐸
𝐶

���
𝑚𝑒𝑎𝑠

means measured
translational Kinematic velocity at Reference point, differentiated with respect to Earth-centered-earth-
fixed frame, and denoted in Control frame. The rotational equation of motion can be expressed as:(

¤𝝎𝐸𝐵
)𝐵
𝐵
= 𝑰−1

𝐵𝐵 ·
[
𝑴𝑃 −

(
𝝎𝐸𝐵

)
𝐵
×

(
𝑰𝐵𝐵 ·

(
𝝎𝐸𝐵

)
𝐵

)]
(1)

where
(
𝝎𝐸𝐵

)
𝐵
= [𝑝 𝑞 𝑟]𝑇 is body angular rate written in B-frame, 𝑰𝐵𝐵 specifies moment tensor

in B-frame, and 𝑴𝑃 denotes moment generated by rotors. A strapdown equation can be used to obtain
multicopter attitude represented by Euler angle, as below:

¤𝚽 = 𝑮 (𝚽) ·
(
𝝎𝐸𝐵

)
𝐵

(2)

4Except where otherwise noted, content of this paper is licensed under
a Creative Commons Attribution 4.0 International License.

The reproduction and distribution with attribution of the entire paper or of individual
pages, in electronic or printed form, including some materials under non-CC-BY 4.0
licenses is hereby granted by the respective copyright owners.

where 𝚽 = [Φ Θ Ψ]𝑇 is Euler angle, and 𝑮 (𝚽) =

1 sinΦ · tanΘ cosΦ · tanΘ
0 cosΦ − sinΦ
0 sinΦ/cosΘ cosΦ/cosΘ

 . Velocities in

C-frame can be calculated via the translational equations of motion:(
¤𝑽𝑅
𝐾

)𝐸𝐶
𝐶

=
1
𝑚

·
[(
𝑭𝑅𝑃

)
𝐶
+

(
𝑭𝑅𝐴

)
𝐶
+

(
𝑭𝑅𝐺

)
𝐶

]
−

(
𝝎𝐸𝐶

)
𝐶
×

(
𝑽𝑅
𝐾

)𝐸
𝐶

(3)

where
(
𝑽𝑅
𝐾

)𝐸
𝐶
= [𝑢𝐶 𝑣𝐶 𝑤𝐶]𝑇 means kinematic speed in C-frame, 𝑚 is mass of multicopter, 𝑭𝑃 is

the force generated by rotors and is used to control three-axis velocities by changing its magnitude and
direction, 𝑭𝐴 is aerodynamic drag force, 𝑭𝐺 stands for gravity, and

(
𝝎𝐸𝐶

)
𝐶
= [0 0 ¤Ψ]𝑇 is angular

rate between inertial frame and C-frame. In this paper, rotor dynamics are simplified into first-order
transfer functions when designing controllers in this paper:

¤Ω𝑖 = 𝐾𝑎𝑐𝑡,𝑖 ·
(
Ω𝑖,𝑐𝑚𝑑 −Ω𝑖

)
(4)

whereΩ𝑖 stands for the rotational speed of 𝑖th rotor, and 𝐾𝑎𝑐𝑡,𝑖 is the bandwidth of 𝑖th rotor. The minimum
and maximum rotational speeds of each rotor are 1, 260 𝑟 𝑝𝑚 and 10, 306 𝑟 𝑝𝑚 respectively.

3 Nominal controller design with adaptive CA
A nominal controller with an adaptive CA part is developed in this section for controlling three-axis

velocities in C-frame and the time derivative of the yaw angle with an estimated CA matrix, as in Fig. 2.
Details about this controller can be found in Ref. [4]. The controller is mainly composed of a control
law part which is designed with the INDI method, a pseudo inverse-based CA part, and an estimation
part which is used to provide a CA matrix. In the estimation part, a common RLS filter is used to
estimate the CA matrix. And then this matrix is later decomposed by the SVD method for further use in
a pseudo inverse-based CA module. Due to the utilization of SVD, the estimation module significantly
contributes to the computational resource consumption of the adaptive controller. Besides, there are also
some auxiliary blocks used to assist the controller with getting required signals, like the signal processing
block. Details about these blocks can be found in Ref. [4].

VEL-RM
LC for VEL

Adding

Coriolis

items

Signal

processing

AR-RM
LC for AR

Dynamic

inversion

(!")#$%&'* + ,,-.

+ ,'-/0 1 2!"3#
$## 4

*-0
 .56 ,'-/0

78&'*

+9 ,,-.

+9 ,'-/0 98 *-0

98'-/0

:98
Actuator

model

:;

;/&<

;&'*

+
-

+
+

=-> !" #$%$ Control

allocation

Desired

dynamics

&'() ,#*

+, #*

 !"# , $!"#

%&'()*+
,,, -

#./

Command

transformation

0!"#

RD2 NDI velocity controller

Extended INDI angular rate controller

RLSPT3 filter

 !"#$

Synchronization

%&' , !"# ,$!"#

Estimation module

 !"# ,$%& ,'($%& ,)*$%&
+$%& , ,$%& ,-$%&

Fig. 2 Adaptive controller structure (VEL, velocity; AR, angular rate; RM, reference model; LC, linear
controller; RLS, recursive least square)

3.1 NDI method-based control law
The designed NDI-based controller in this paper is composed of two parts, an outer loop velocity

controller and an inner loop angular rate controller, as in Fig. 2.

5Except where otherwise noted, content of this paper is licensed under
a Creative Commons Attribution 4.0 International License.

The reproduction and distribution with attribution of the entire paper or of individual
pages, in electronic or printed form, including some materials under non-CC-BY 4.0
licenses is hereby granted by the respective copyright owners.

A noncascaded NDI controller with a relative degree of 2 is developed for tracking velocity com-
mands. It is mainly composed of a reference model, a linear controller, and a dynamic inversion part. A
second-order dynamic equation is used as the reference model, whose natural frequency is 2 rad/s and
damping ratio is 1. The reference states are used in the linear control law design:(

¥𝑽𝑅
𝐾

)𝐸𝐶𝐶
𝐶

����
𝑑𝑒𝑠

=𝑲𝐹,𝑉 ·
(
¥𝑽𝑅
𝐾

)𝐸𝐶𝐶
𝐶

����
𝑟𝑒 𝑓

+ 𝑲𝑃,𝑉 ·
((
𝑽𝑅
𝐾

)𝐸
𝐶

����
𝑟𝑒 𝑓

−
(
𝑽𝑅
𝐾

)𝐸
𝐶

����
𝑒𝑠𝑡

)
+ 𝑲𝐷,𝑉 ·

((
¤𝑽𝑅
𝐾

)𝐸𝐶
𝐶

����
𝑟𝑒 𝑓

−
(
¤𝑽𝑅
𝐾

)𝐸𝐶
𝐶

����
𝑒𝑠𝑡

) (5)

where subscript 𝑒𝑠𝑡 stands for estimated values. Desired jerk commands with respect to the C-frame are
transferred into absolute jerk commands with respect to the inertial frame:(

¥𝑽𝑅
𝐾

)𝐸𝐸𝐸
𝐶

����
𝑑𝑒𝑠

=

(
¥𝑽𝑅
𝐾

)𝐸𝐶𝐶
𝐶

����
𝑑𝑒𝑠

+
(
¤𝝎𝐸𝐶

)𝐶
𝐶
×

(
𝑽𝑅
𝐾

)𝐸
𝐶
+

(
𝝎𝐸𝐶

)
𝐶
×

(
¤𝑽𝑅
𝐾

)𝐸𝐶
𝐶

+
(
𝝎𝐸𝐶

)
𝐶
× (𝒇𝐶 + 𝒈𝐶) (6)

where 𝒇 stands for specific force, 𝒈 means gravitational acceleration. A dynamic inversion is used to get
inner loop angular rate commands from the jerk commands:

𝑝

𝑞

¤𝑓𝑧𝐵

𝑑𝑒𝑠 =

0 −1/ 𝑓𝑧𝐵,𝑚𝑒𝑎𝑠 0
1/ 𝑓𝑧𝐵,𝑚𝑒𝑎𝑠 0 0

0 0 1

 · 𝑴𝐵𝐶 ·
(
¥𝑽𝑅
𝐾

)𝐸𝐸𝐸
𝐶

����
𝑑𝑒𝑠

(7)

where 𝑴𝐵𝐶 is rotation matrix from C-frame to B-frame, and 𝑓𝑧𝐵,𝑚𝑒𝑎𝑠 denotes measured specific force
along z-axis of B-frame.

In order to track angular rate commands, the extended INDI method considering actuator dynamics
is used to design inner loop controller [22]. Similar to velocity controller, it is consisted of a reference
model, a linear controller, and a dynamics inversion function. The reference model used in the angular
rate controller is of the first order and has bandwidths of 10 𝑟𝑎𝑑/𝑠, 10 𝑟𝑎𝑑/𝑠, and 5 𝑟𝑎𝑑/𝑠 for roll,
pitch, and yaw channels respectively. With referenced states and measured states, the linear controller is
implemented to generate desired angular acceleration, as follows:(

¤𝝎𝐸𝐵
)𝐵
𝐵

����
𝑑𝑒𝑠

= 𝑲𝐹,𝜔 ·
(
¤𝝎𝐸𝐵

)𝐵
𝐵

����
𝑟𝑒 𝑓

+ 𝑲𝑃,𝜔 ·
((
𝝎𝐸𝐵

)
𝐵

���
𝑟𝑒 𝑓

−
(
𝝎𝐸𝐵

)
𝐵

���
𝑒𝑠𝑡

)
(8)

According to Ref. [22], the desired dynamics of angular acceleration need to be designed based on the
bandwidth of actuators: (

¥𝝎𝐸𝐵
)𝐵𝐵
𝐵

����
𝑑𝑒𝑠

= 𝑲 ¤𝜔 ·
((

¤𝝎𝐸𝐵
)𝐵
𝐵

����
𝑑𝑒𝑠

−
(
¤𝝎𝐸𝐵

)𝐵
𝐵

����
𝑒𝑠𝑡

)
(9)

where 𝑲 ¤𝜔 is the bandwidth of desired dynamics and is chosen to be 𝑑𝑖𝑎𝑔 (50, 50, 10).
Developed velocity controller and angular rate controller constitute a complete control law mod-

ule and generate desired time derivative commands of pseudo control inputs which are defined as

𝜈 =

[
𝑓𝑧𝐵 |𝑑𝑒𝑠

(
¤𝝎𝐸𝐵

)𝐵
𝐵

���
𝑑𝑒𝑠

]𝑇
in this paper. These rate commands of pseudo inputs, i.e., ¤𝝂𝑑𝑒𝑠 =[

¤𝑓𝑧𝐵
(
¥𝝎𝐸𝐵

)𝐵𝐵
𝐵

]𝑇
, will then be allocated into incremental rotor speed commands by a CA part. The incre-

mental commands will be added to estimated rotor speeds for obtaining absolute rotor speed commands
which are fed into motors, as in Fig. 2.

6Except where otherwise noted, content of this paper is licensed under
a Creative Commons Attribution 4.0 International License.

The reproduction and distribution with attribution of the entire paper or of individual
pages, in electronic or printed form, including some materials under non-CC-BY 4.0
licenses is hereby granted by the respective copyright owners.

3.2 Pseudo inverse-based CA module
The CA problem can be established by calculating derivatives of pseudo inputs. The specific force

along z-axis of B-frame can be expressed as follows:

𝑓𝑧𝐵 =
1
𝑚

·
[
−𝑇 +

(
𝐹𝑅𝐴

)
𝑧𝐵

]
(10)

Combining Eq. (1) with Eq. (10) and neglecting slow dynamics, the rates of pseudo inputs can be derived
as in following equation:

¤𝝂 =

[
¤𝑓𝑧𝐵(

¥𝝎𝐸𝐵
)𝐵𝐵
𝐵

]
=

𝜕 𝑓𝑧𝐵
𝜕𝑇

· 𝜕𝑇
𝜕𝛀

𝜕

(
(¤𝝎𝐸𝐵)𝐵𝐵

)
𝜕𝑴𝑃

· 𝜕𝑴𝑃

𝜕𝛀

︸ ︷︷ ︸
𝑩

· ¤𝛀 (11)

where 𝑩 is defined as control effectiveness matrix in this paper. The matrix stands for the capability by
which rotor acceleration influences the rate of pseudo inputs. Assuming the actuator dynamics are of the
first order as in Eq. (4), the expression of pseudo inputs rates in Eq. (11) can be further derived as follows:

¤𝝂 = 𝑩 · 𝑲𝑎𝑐𝑡︸ ︷︷ ︸
𝑩𝑐𝑎

·Δ𝛀 (12)

where 𝑩𝑐𝑎 ∈ R4×6 is the CA matrix in this paper, and Δ𝛀 = 𝛀𝑐𝑚𝑑 − 𝛀. Given a desired pseudo input
rate command ¤𝝂𝑑𝑒𝑠, the CA problem is to find the incremental control vector Δ𝛀 satisfying Eq. (12).
The equation coincides with the standard CA problem in Refs. [19, 23] and can be then solved by many
different CA methods.

In this paper, pseudo inverse-based method is chosen to design CA part because of its simplicity
and computational efficiency [24]. In order to use this method and also some other null space-based
techniques, the pseudo inverse of the CA matrix 𝑩+

𝑐𝑎 is obtained by implementing SVD on 𝑩𝑐𝑎, as follows:

𝑩𝑐𝑎 = 𝑼 ·
[
𝑺 04×2

]
︸ ︷︷ ︸

𝚺

·𝑽𝑇 (13)

where 𝑼 ∈ R4×4 and 𝑽 ∈ R6×6 are orthogonal matrices, 𝑺 ∈ R4×4 is a matrix whose diagonal elements
are the singular values of 𝑩𝑐𝑎 matrix, and 𝚺 = [𝑺 04×2] ∈ R4×6 is a rectangular diagonal matrix.
With the SVD results, the solution to the aforementioned CA problem in Eq. (12) can be expressed as
follows:

Δ𝛀 = 𝑽 ·
[
𝑺−1 04×2

]
·𝑼𝑇︸ ︷︷ ︸

𝑩+
𝑐𝑎

· ¤𝝂𝑑𝑒𝑠 (14)

The absolute commands fed into actuators can then be obtained by adding estimated current rotor speeds
on these allocated incremental commands.

3.3 Adaptive augmentation by using RLS filter
The CA matrix is obtained in this paper by estimation, which drives the developed controller into

an adaptive one [4]. Assuming pseudo inputs rates ¤𝝂 in Eq. (12) is measurable and the incremental rotor
speed vector Δ𝛀 can be obtained from actuator model, the standard observation model of pseudo inputs
rates can be written as follows:

𝒚 = 𝚯 · 𝒙 + 𝒗 (15)

7Except where otherwise noted, content of this paper is licensed under
a Creative Commons Attribution 4.0 International License.

The reproduction and distribution with attribution of the entire paper or of individual
pages, in electronic or printed form, including some materials under non-CC-BY 4.0
licenses is hereby granted by the respective copyright owners.

where 𝒚 = ¤𝝂 =

[
¤𝑓𝑧𝐵

��
𝑒𝑠𝑡

(
¥𝝎𝐸𝐵

)𝐵𝐵
𝐵

���
𝑒𝑠𝑡

]𝑇
denotes measurements, 𝚯 = 𝑩𝑐𝑎 is parameters to be estimated,

𝒙 = Δ𝛀 stands for model inputs, and 𝒗 is measurement noise. Based on Eq. (15), the estimation problem
in this paper is formulated to find the unknown CA matrix which minimizes the cost function:

𝐽𝑅𝐿𝑆 =
∑︁𝑛

𝑖=1
𝜆𝑛−𝑖 ·

(
𝒚 − �̂� · 𝒙

)
(16)

where �̂� is estimated parameters, and 𝜆 is forgetting factor. In this paper, RLS method is used to solve
the problem defined with Eqs. (15-16) and to develop major filter part of parameter estimation module.

Residual

calculation

Gain calculation
Updating the

inverse of the

covariance

matrix

Updating

parameters

1-
z

1-
z

 !

"!

!!

$!%1

$!

&! '(!

'(!%1

SVD
 !"

#$"

%&"

Fig. 3 Common RLS filter

As in Fig. 2, the parameter es-
timation module receives data, i.e.,
𝑓𝑧𝐵,𝑚𝑒𝑎𝑠, 𝝎𝑚𝑒𝑎𝑠, and Δ𝛀𝑎𝑐𝑡 , from
both the sensor and actuator model
and outputs estimated SVD results
of the CA matrix. Received data
are firstly synchronized to exclude
adverse effects caused by differ-
ences among pure time delays ex-
isted in sensors. Then a third-order
filter is used to reduce noise in sen-
sor data and estimate data fed into
RLS, whose natural frequency is
25 rad/s. After obtaining required
data, i.e., ¤𝑓𝑧𝐵

��
𝑒𝑠𝑡

,
(
¥𝝎𝐸𝐵

)𝐵𝐵
𝐵

���
𝑒𝑠𝑡

, and

Δ𝛀𝑒𝑠𝑡 , the RLS filter is able to provide the unknown CA matrix �̂� online, as in Fig. 3. Its algorithm is
as follows:

𝒆𝑡 = 𝒚𝑇𝑡 − 𝒙𝑇𝑡 �̂�
𝑇

𝑡−1 (17)

𝑲𝑡 = 𝑷𝑡−1𝒙𝑡
(
𝜆 + 𝒙𝑇𝑡 𝑷𝑡−1𝒙𝑡

)−1
(18)

�̂�
𝑇

𝑡 = �̂�
𝑇

𝑡−1 + 𝑲𝑡𝒆𝑡 (19)

𝑷𝑡 =
1
𝜆

(
𝑷𝑡−1 − 𝑲𝑡𝒙

𝑇
𝑡 𝑷𝑡−1

)
(20)

where 𝒆𝑡 ∈ R1×4 is a priori error, 𝑷𝑡 ∈ R6×6 is an approximation of the inverse correlation matrix,
𝑲𝑡 ∈ R6×1 is the gain matrix, and 𝜆 is the forgetting factor set to 0.999 in this paper. The initial
value of 𝑷𝑡 is chosen as 50 × 𝑰6×6. Subsequently, choosing an SVD method, the estimated matrix can be
decomposed into singular values and singular vectors, which provides convenience for further calculating
pseudo inverse of the matrix in CA module, as in green parts of Fig. 3.

4 Rank one update-based efficient RLS filter
The rank one update method is chosen to be integrated with common RLS and to decrease com-

putational resources consumed by designed adaptive CA. In section 3.3, the SVD computation of the
estimated CA matrix, which has a computational complexity of O

(
𝑛3) for a𝑚×𝑛matrix [25], constitutes

a significant portion of the overall CA computational resources. Noticing that the correction factor 𝑲𝑡𝒆𝑡
in Eq. (19) has a rank of 1, the rank one update method can be implemented to iteratively update the SVD
results of the estimated CA matrix, which has a computational complexity of O

(
𝑛2) for a 𝑚 × 𝑛 matrix

8Except where otherwise noted, content of this paper is licensed under
a Creative Commons Attribution 4.0 International License.

The reproduction and distribution with attribution of the entire paper or of individual
pages, in electronic or printed form, including some materials under non-CC-BY 4.0
licenses is hereby granted by the respective copyright owners.

with rank one perturbation [26, 27]. Compared to decomposing the matrix by SVD methods, updating
decomposition results with a rank one perturbation part saves computational resources.

4.1 Introduction of rank one update method
The rank one update method can be used to update the SVD of a matrix that is perturbed by a rank

one matrix [26–28]. In this paper, the method is used to modify the parameter update step in RLS, i.e.,
Eq. (19), for iteratively updating SVD results of the estimated matrix in current step.

The parameter update step in RLS can be expressed into a standard rank one update problem by
transposing Eq. (19) and expressing estimated matrix into SVD form:

�̂�𝑡�̂�𝑡�̂�
𝑇
𝑡 = �̂�𝑡−1�̂�𝑡−1�̂�

𝑇
𝑡−1 + 𝒂𝒃𝑇

= �̂�𝑡−1�̂�𝑡−1�̂�
𝑇
𝑡−1 + 𝒆𝑇𝑡 𝑲

𝑇
𝑡

(21)

where 𝒂 = 𝒆𝑇𝑡 ∈ R4×1, and 𝒃 = 𝑲𝑡 ∈ R6×1. Eq. (21) is consistent with the rank one problem described in
Ref. [26] and can be solved step by step with the SVD result obtained from last time step.

Solving a rank one update problem such as Eq. (21) can be split into several steps. The hat symbol
□̂ used to stand for estimation in Eq. (21) is ignored in following rank one update method introduction
part for simplicity. Details of rank one update method can be found in Refs. [26, 27, 29]. In this paper,
most derivation steps are ignored, and only conclusive equations of the rank one method are introduced:

0) The rank one update method is used to get the SVD result of a rank one perturbed matrix:

𝑼𝑡𝚺𝑡𝑽
𝑇
𝑡︸ ︷︷ ︸

𝚯𝑡

= 𝑼𝑡−1𝚺𝑡−1𝑽
𝑇
𝑡−1︸ ︷︷ ︸

𝚯𝑡−1

+𝒂𝒃𝑇 (22)

1) As in Ref. [26], Eq. (22) should be transformed into two rank one update problem:

𝚯𝑡𝚯
𝑇
𝑡 = 𝑼𝑡 𝚺𝑡𝚺

𝑇
𝑡︸︷︷︸

𝑫𝑡

𝑼𝑇𝑡 =

(
𝑼𝑡−1𝚺𝑡−1𝑽

𝑇
𝑡−1 + 𝒂𝒃𝑇

) (
𝑼𝑡−1𝚺𝑡−1𝑽

𝑇
𝑡−1 + 𝒂𝒃𝑇

)𝑇
= 𝑼𝑡−1𝚺𝑡−1𝑽

𝑇
𝑡−1𝑽𝑡−1𝚺

𝑇
𝑡−1𝑼

𝑇
𝑡−1 +𝑼𝑡−1𝚺𝑡−1𝑽

𝑇
𝑡−1𝒃︸ ︷︷ ︸

�̄�

𝒂𝑇 + 𝒂 𝒃𝑇𝑽𝑡−1𝚺
𝑇
𝑡−1𝑼

𝑇
𝑡−1︸ ︷︷ ︸

�̄�𝑇

+𝒂 𝒃𝑇 𝒃︸︷︷︸
𝛽

𝒂𝑇

= 𝑼𝑡−1 𝚺𝑡−1𝚺
𝑇
𝑡−1︸ ︷︷ ︸

𝑫𝑡−1

𝑼𝑇𝑡−1 + �̄�𝒂𝑇 + 𝒂�̄�𝑇 + 𝛽𝒂𝒂𝑇

(23)

where 𝑫 is actually the eigenvalue matrix of 𝚯𝚯𝑇 . The perturbation part can be further derived:

�̄�𝒂𝑇 + 𝒂�̄�𝑇 + 𝛽𝒂𝒂𝑇 =

[
𝒂 �̄�

] [
𝛽 1
1 0

] [
𝒂𝑇

�̄�𝑇

]
=

[
𝒂 �̄�

]
𝑸︸ ︷︷ ︸[

𝒂1 𝒃1
]
[
𝜌1 0
0 𝜌2

]
𝑸𝑇

[
𝒂𝑇

�̄�𝑇

]
︸ ︷︷ ︸[
𝒂1 𝒃1

]𝑇
= 𝜌1𝒂1𝒂

𝑇
1 + 𝜌2𝒃1𝒃

𝑇
1

(24)

9Except where otherwise noted, content of this paper is licensed under
a Creative Commons Attribution 4.0 International License.

The reproduction and distribution with attribution of the entire paper or of individual
pages, in electronic or printed form, including some materials under non-CC-BY 4.0
licenses is hereby granted by the respective copyright owners.

where

[
𝛽 1
1 0

]
= 𝑸

[
𝜌1 0
0 𝜌2

]
𝑸𝑇 is obtained by implementing Schur-decomposition. Then:

𝑼𝑡𝑫𝑡𝑼
𝑇
𝑡 = 𝑼𝑡−1𝑫𝑡−1𝑼

𝑇
𝑡−1 + 𝜌1𝒂1𝒂

𝑇
1︸ ︷︷ ︸

�̃��̃��̃�𝑇

+𝜌2𝒃1𝒃
𝑇
1 (25)

2) The Eq. (25) can be viewed as two consecutive rank one modifications of symmetric eigenproblem:

�̃��̃��̃�𝑇 = 𝑼𝑡−1𝑫𝑡−1𝑼
𝑇
𝑡−1 + 𝜌1𝒂1𝒂

𝑇
1 = 𝑼𝑡−1

(
𝑫𝑡−1 + 𝜌1 �̄� �̄�

𝑇
)
𝑼𝑇𝑡−1 (26)

𝑼𝑡𝑫𝑡𝑼
𝑇
𝑡 = �̃��̃��̃�𝑇 + 𝜌2𝒃1𝒃

𝑇
1 = �̃�

(
�̃� + 𝜌2 �̄� �̄�

𝑇
)
�̃�𝑇 (27)

where �̄� = 𝑼𝑇
𝑡−1𝒂1 and �̄� = �̃�𝑇 𝒃1.

3) The key to solve aforementioned Eqs. (26-27) is calculating the eigendecomposition of both
𝑫𝑡−1 + 𝜌1 �̄� �̄�

𝑇 and �̃� + 𝜌2 �̄� �̄�
𝑇 , i.e., to get eigenvalues and eigenvectors of a known diagonal

matrix 𝑫 with rank one perturbation 𝜌𝒛𝒛𝑇 , as follows:

�̃� �̃��̃�𝑇 = 𝑫 + 𝜌𝒛𝒛𝑇 (28)

Solutions to the problem can be found in Ref. [29] and simply introduced here:
3.1) An initial deflation should be done to simplify the given problem in Eq. (28), like

multiple eigenvalues [29].
3.2) Based on a theorem proven by Golub [30], the eigenvalues of 𝑫 + 𝜌𝒛𝒛𝑇 can be obtained

by solving following secular equation with iterative approximation method:

𝑤 (𝜆) ≡ 1 + 𝜌
𝑛∑︁
𝑗=1

𝜁2
𝑗(

𝑑 𝑗 − 𝜆
) = 0 (29)

where 𝜁 𝑗 is the 𝑗 th element in normalized 𝒛, and 𝑑 𝑗 is the 𝑗 th eigenvalue of 𝑫.
3.3) The explicit computation of the updated eigenvectors �̃� can then be done as follows:

𝒄𝑖 =
𝑫−1
𝑖
𝒛𝑫−1

𝑖
𝒛

2
(30)

where 𝑫𝑖 = 𝑫 − 𝜆𝑖 𝑰.
4) Substituting the eigendecomposition into Eqs. (26-27) leads to following equations:

�̃��̃��̃�𝑇 = 𝑼𝑡−1

(
𝑫𝑡−1 + 𝜌1 �̄� �̄�

𝑇
)
𝑼𝑇𝑡−1 = 𝑼𝑡−1�̃�︸︷︷︸

�̃�

�̃��̃�𝑇𝑼𝑇𝑡−1 (31)

𝑼𝑡𝑫𝑡𝑼
𝑇
𝑡 = �̃�

(
�̃� + 𝜌2 �̄� �̄�

𝑇
)
�̃�𝑇 = �̃�𝑪𝑡︸︷︷︸

𝑼𝑡

𝑫𝑡𝑪
𝑇
𝑡 �̃�

𝑇 (32)

Until now, the left singular vector𝑼𝑡 is successfully updated, and it is also easy to obtain singular
values 𝚺𝑡 from the eigenvalue matrix 𝑫𝑡 of 𝚯𝑡𝚯𝑇

𝑡 by taking square root.
5) With 𝑼𝑡 and 𝚺𝑡 , a set of right singular vectors in column space can be obtained, as follows:

𝚯𝑡𝒗𝑖 = 𝜌𝑖𝒖𝑖, 𝑓 𝑜𝑟 𝑖 𝑓 𝑟𝑜𝑚 1 𝑡𝑜 𝑟 (33)

where 𝑟 is the rank of 𝚯𝑡 .

10Except where otherwise noted, content of this paper is licensed under
a Creative Commons Attribution 4.0 International License.

The reproduction and distribution with attribution of the entire paper or of individual
pages, in electronic or printed form, including some materials under non-CC-BY 4.0
licenses is hereby granted by the respective copyright owners.

6) If required, null space basis can be calculated by solving following equation:

𝑽𝑇𝑟 𝒙 = 0 (34)

where 𝑽𝑟 = [𝒗1 · · · 𝒗𝑟] is the column space basis obtained in step 5). Solutions to Eq. (34)
constitute null space vectors 𝑽𝑛. For guaranteeing the orthogonality of right singular vectors,
Gram-Schmidt process can be implemented on the full right singular matrix 𝑽 = [𝑽𝑟 𝑽𝑛].

So far, the rank one update method for SVD is introduced. It is obvious that Eq. (19) can be solved by
the method described by Eqs. (22-34) when the SVD of the estimated CA matrix �̂� is required.

4.2 Updating singular value decomposition of CA matrix in RLS filter

Residual

calculation

Gain calculation
Updating the

inverse of the

covariance

matrix

Updating

parameters with

rank one update

1-
z

1-
z

 !

"!

!!

$!%1

$!

&!

'(!%1

)!

*!

+!

×

Fig. 4 RLS filter with rank one update

In designed INDI controller
with an adaptive CA part, the com-
plete SVD process of the CA ma-
trix in every time step costs most
of the computational resources. A
rank one update method described
in section 4.1 is integrated with
RLS in this paper for iteratively up-
dating SVD, as in Fig. 4. In this
way, this modified efficient RLS
can directly output SVD results of
estimated matrix which can be eas-
ily utilized in CA module. Bene-
fited from efficient computation of
rank one update, modified adaptive
CA module saves calculation and
time.

By updating SVD of estimated CA matrix with perturbation in Eq. (19), rank one update is integrated
with RLS filter, as shown in Fig. 4. The parameter updating part, i.e., the green part of Fig. 4, provides
SVD results of estimated matrix for downstream CA part. Rank one update-based parameter update step
in modified RLS filter can be expressed as follows:{

�̂�𝑡 , �̂�𝑡 , �̂�
𝑇
𝑡

}
= 𝑓𝑅𝑎𝑛𝑘1

(
�̂�𝑡−1, �̂�𝑡−1, �̂�

𝑇
𝑡−1, 𝒆

𝑇
𝑡 , 𝑲𝑡

)
(35)

where 𝑓𝑅𝑎𝑛𝑘1 stands for rank one update algorithm described by Eqs. (22-34). The other equations of
modified RLS are the same as in Eqs. (17-18,20).

The improvement in computational efficiency comes from using rank one update method in parameter
update step. Comparing Fig. 3 with Fig. 4, changes are mainly in green blocks. An SVD module is
required in Fig. 3 to calculate SVD results, while proposed efficient RLS can directly output SVD of
estimated matrix in update step. Therefore, a comparison of computational efficiency between common
RLS and proposed efficient RLS can be simplified to compare parameter update step in both filters.

5 Results analysis
Proposed rank one update-based adaptive CA is tested on a complex high-fidelity multicopter model

described as in section 2. The INDI controller with rank one update-based RLS filter is compared against
the one with common RLS to show that the tracking performance is not deteriorated by rank one update

11Except where otherwise noted, content of this paper is licensed under
a Creative Commons Attribution 4.0 International License.

The reproduction and distribution with attribution of the entire paper or of individual
pages, in electronic or printed form, including some materials under non-CC-BY 4.0
licenses is hereby granted by the respective copyright owners.

method. Besides, data fed into parameter update step are recorded for further computational tests. With
these data, numerical calculation tests are done on parameter update step of both common and proposed
RLS. Results show that rank one update-based parameter update performs substantially better than using
SVD after parameter update in terms of saving computational resources.

5.1 Tracking performance of the INDI controller with proposed adaptive CA

0 5 10 15 20 25

0

1

2

3

4

10
-6

Fig. 5 Difference between rank one update and SVD

Designed INDI controller with rank one
update-based adaptive CA is tested and compared
with the one using SVD to get pseudo inverse of
CA matrix. Firstly, the SVD results obtained from
common RLS and proposed RLS are compared in
the same simulation test to show that there is no
large numerical difference caused by using rank
one update method. Then, command tracking per-
formance is shown to have no large change after
replacing common RLS with proposed one.

Rank one update method as described in sec-
tion 4.1 will produce numerical differences with
SVD methods [26, 27]. When implementing the
method, some thresholds are required for termi-

nating iteration process of the approximation method used to solve Eq. (29). Different thresholds may
cause different levels of numerical deviation between SVD results obtained from rank one update method
and SVD methods. In this paper, the threshold is set according to suggestions from Ref. [29]. A test is
done that rank one update-based RLS filter runs in parallel with common RLS in close loop control. The
SVD result difference is quantified in this paper as follows:

𝑒𝑅𝑎𝑛𝑘1 =
∥𝑼𝑅𝑎𝑛𝑘1 −𝑼𝑆𝑉𝐷 ∥𝐹

𝑚
+ ∥𝑺𝑅𝑎𝑛𝑘1 − 𝑺𝑆𝑉𝐷 ∥𝐹√

𝑟
+

𝑽𝑟,𝑅𝑎𝑛𝑘1 − 𝑽𝑟,𝑆𝑉𝐷

𝐹√

𝑚𝑛
(36)

where𝑽𝑟 is the column space basis of estimated matrix𝚯, subscript□𝑅𝑎𝑛𝑘1 stands for parameters obtained
from rank one update, subscript □𝑆𝑉𝐷 means parameters from SVD method, ∥·∥𝐹 is the Frobenius norm
of a matrix, 𝑚, 𝑛, 𝑟 are the row number, column number, and rank of 𝚯, respectively. The simulation
result shows that the numerical difference is quite small with a magnitude of 10−6, as in Fig. 5. It can be
seen from Fig. 5 that the differences at certain time steps are larger than in peacetime, which is caused
by large rank one perturbation on previous matrix. Sudden changes of ¤𝝂 in Eq. (11) and Δ𝛀 occur every
time when there is a step command, as in Fig. 6, which give a strong excitation and more information to
RLS filter. The rank one perturbation obtained from vectors 𝒂 and 𝒃 in Eq. (22) are positively influenced
by the measurement of ¤𝝂 and Δ𝛀, and therefore are also enlarged. Due to the rank one update method
used in this paper, the difference in singular values is stable even though there is a large perturbation.
The differences in singular vectors are increased because of large rank one perturbation, and are proven
in Ref. [27, 29] that it is bounded by thresholds set in rank one update method.

As in aforementioned discussion, rank one update method may cause little numerical error and then
influence estimation results. The estimated matrix with this error will further affect the control of the
plant. However, due to the very small magnitude of the error, i.e., about 10−6, it will not cause significant
changes in plant states and the estimation error can also be corrected and eliminated by measurements
fed back from plant. Therefore, the tracking performance of the controller with rank one update-based
adaptive CA remains nearly the same as the one executing complete SVD in every time step, as in Fig. 6.
The black line in Fig. 6 stands for tracking performance of designed controller with SVD used in adaptive
CA, and the blue line corresponds to the controller using rank one update. These two lines coincide well,

12Except where otherwise noted, content of this paper is licensed under
a Creative Commons Attribution 4.0 International License.

The reproduction and distribution with attribution of the entire paper or of individual
pages, in electronic or printed form, including some materials under non-CC-BY 4.0
licenses is hereby granted by the respective copyright owners.

0 10 20

0

2

4

0 10 20

-0.02

0

0.02

0 10 20

0

2

4

0 10 20

-0.02

0

0.02

0 10 20

0

1

2

0 10 20

-0.1

0

0.1

Fig. 6 Difference in terms of tracking performance between
controllers using rank one update and SVD

which means there is not too large devi-
ation in tracking performance between
using SVD and rank one update in
developed controller. The right part
of Fig. 6 shows that the deviations in
three velocity channels are in the mag-
nitude of 10−2. At the beginning of
this simulation, RLS filter will con-
verge quickly because of strong excita-
tion, and the estimated matrix will also
have rapid changes. In this stage, the
numerical differences mentioned above
can cause differences in estimation and
tracking performance between putting
SVD and rank one update in adaptive
CA. Therefore, the difference in𝑤 chan-
nel is a little bit larger with a magni-
tude of 10−1. Generally speaking, using
rank one update-based adaptive CA will
not adversely affect the tracking perfor-
mance.

5.2 Computational efficiency analysis of rank one update-based RLS filter
Rank one update method, which can update SVD result of a rank one perturbed matrix [26, 27],

is integrated into the designed adaptive CA module in this paper for reducing calculation. The SVD of
CA matrix is usually required for implementing pseudo inverse-based CA method and null space-based
techniques. In common adaptive CA module as in Ref. [4], estimated CA matrix obtained from RLS
filter is decomposed completely by SVD methods in every time step. The decomposition uses much
computational resources because of its complexity. In order to reduce calculation, rank one update is
used in parameter update step of RLS algorithm for iteratively updating SVD of estimated CA matrix, as
in section 4. In this way, rank one update connects RLS filter with CA part, and complete SVD in every
time step is no more required.

Several computational efficiency tests are done in this paper to verify the proposed RLS filter. As
in section 4.2, only the parameter update steps in common RLS and modified RLS are different. So,
tests are only implemented to compare computational efficiency of this step. Data used in the tests are
obtained from simulation experiment in section 5.1, which have 25001 data points. The data will be
calculated 100 times in single test, which means 100×25001 iterations for both SVD-based and rank one
update-based parameter update. The SVD used in common RLS is the MATLAB built-in SVD function
with MATLAB version as R2023a. The parameter update step of common RLS and the SVD function
are transferred into C code by MATLAB Coder. Besides, rank one update-based parameter update step
as in Eq. (35) is also transferred into C code in the same way. The toolchain used in MATLAB Coder
is ’Microsoft Visual Studio Project 2019 | CMake (64-bit Windows)’. These two sets of C Code run in
Visual Studio 2019 and are analyzed by Performance Profiler. When running C code, the configuration
is set to ’Release’, and the platform is set to ’x64’. The computer used here has an AMD Ryzen 7 PRO
4750U CPU and 2 × 8 GB DDR4 memory.

The aforementioned computational efficiency test results are as in Tab. 1. It is obvious that rank
one update-based parameter update step is faster than SVD-based one, which benefits from the efficient
computation of rank one update method. For processing 100 × 25001 data points in x64 platform, rank
one update only needs about 28195.55 ms while SVD takes roughly 43210.50 ms. By using rank one

13Except where otherwise noted, content of this paper is licensed under
a Creative Commons Attribution 4.0 International License.

The reproduction and distribution with attribution of the entire paper or of individual
pages, in electronic or printed form, including some materials under non-CC-BY 4.0
licenses is hereby granted by the respective copyright owners.

Table 1 Computational time results of SVD-based and rank one update-based parameter update step

Methods SVD Rank One Update

Computational Time (ms)

41904.75 28087.75
50538.59 25261.37
43359.43 30515.53
41706.36 30987.84
38543.35 26125.26

Average Computational
Time (ms) 43210.50 28195.55

update to connect RLS with CA part rather than SVD, the computational efficiency is enhanced by
34.75%. It is shown in Tab. 1 that there are some differences among computational times in each test. It
is caused by different environments, computer workloads, CPU usage, etc. In each experiment, diligent
efforts are made to minimize these discrepancies to ensure fair comparisons.

6 Conclusion
A rank one update-based adaptive CA is proposed in this paper for improving computational efficiency

and in the same time keeping good control performance. The adaptive CA in this paper uses RLS
to estimate CA matrix and pseudo inverse-based CA method to allocate desired pseudo commands.
Therefore, the SVD result of the estimated matrix is required in every time step for calculating its pseudo
inverse, which wastes computational resources in common SVD-based adaptive CA. In this paper, the
rank one update method is used to update the SVD result and connect RLS with CA module. This rank
one update-based adaptive CA is tested in a multicopter testbed where an INDI controller is designed
to control three-axis velocities. Results show that the SVD results obtained from rank one update
method and SVD method have a small difference of about 10−5. With such a negligible difference, the
control performance has not large difference between using rank one update and SVD methods. The
maximum difference exists in vertical velocity control channel, which is about 0.1 m/s. When it comes to
computational efficiency, rank one update-based adaptive CA shows significant improvement compared
to the SVD-based one. The update step in RLS with rank one update needs only about 28195.55 ms for a
100× 25001 data points test, while the update step with SVD takes almost 43210.50 ms. In other words,
the rank one update method saves computational time by 34.75%. The future work would be testing the
developed rank one update-based adaptive CA on the airborne computer of a real multicopter.

Acknowledgments
The first author is financially supported for his Ph.D. research by China Scholarship Council with the

project reference number of 202006020037. The authors would like to acknowledge Jiannan Zhang and
Venkata Sravan Akkinapalli for their support in providing useful and meaningful suggestions regarding
the works of this paper.

References
[1] W Schmidbauer, C Jänig, E Vits, T Gruebl, S Sauer, N Weller, K Kehe, F Holzapfel, T Lüth, KG Kanz, et al.

Ein neues rettungskonzept für schwerstverletzte in militärischen und zivilen großschadenslagen: Dronevac.
Notfall+ Rettungsmedizin, pages 1–8, 2023. DOI: 10.1007/s10049-023-01190-5.

14Except where otherwise noted, content of this paper is licensed under
a Creative Commons Attribution 4.0 International License.

The reproduction and distribution with attribution of the entire paper or of individual
pages, in electronic or printed form, including some materials under non-CC-BY 4.0
licenses is hereby granted by the respective copyright owners.

https://doi.org/10.1007/s10049-023-01190-5

[2] Nhan Nguyen, Kalmanje Krishnakumar, John Kaneshige, and Pascal Nespeca. Flight dynamics and hybrid
adaptive control of damaged aircraft. Journal of guidance, control, and dynamics, 31(3):751–764, 2008.
DOI: 10.2514/1.28142.

[3] Venkata S Akkinapalli, Guillermo P Falconí, and Florian Holzapfel. Fault tolerant incremental attitude
control using online parameter estimation for a multicopter system. In 2017 25th Mediterranean Conference
on Control and Automation (MED), pages 454–460. IEEE, 2017. DOI: 10.1109/MED.2017.7984159.

[4] Hangxu Li, Stephan Myschik, and Florian Holzapfel. Null-space-excitation-based adaptive control for
an overactuated hexacopter model. Journal of Guidance, Control, and Dynamics, 46(3):483–498, 2023.
DOI: 10.2514/1.G006771.

[5] Karl J Åström and Björn Wittenmark. Adaptive control. Courier Corporation, 2013.

[6] Gang Tao. Adaptive control design and analysis, volume 37. John Wiley & Sons, 2003.

[7] Marc Steinberg. Historical overview of research in reconfigurable flight control. Proceedings of the In-
stitution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 219(4):263–275, 2005.
DOI: 10.1243/095441005X30379.

[8] AM Annaswamy, E Lavretsky, ZT Dydek, TE Gibson, and M Matsutani. Recent results in robust adaptive
flight control systems. International Journal of Adaptive Control and Signal Processing, 27(1-2):4–21, 2013.
DOI: 10.1002/acs.2341.

[9] Guillermo Paúl Falconí Salazar. Adaptive Fault Tolerant Control for VTOL Aircraft with Actuator Redundancy.
PhD thesis, Technische Universität München, 2021.

[10] Pranav Bhardwaj, Venkata Sravan Akkinapalli, Jiannan Zhang, Saurabh Saboo, and Florian Holzapfel.
Adaptive augmentation of incremental nonlinear dynamic inversion controller for an extended f-16 model. In
AIAA Scitech 2019 Forum, page 1923, 2019. DOI: 10.2514/6.2019-1923.

[11] Byoung S Kim and Anthony J Calise. Nonlinear flight control using neural networks. Journal of Guidance,
Control, and Dynamics, 20(1):26–33, 1997. DOI: 10.2514/2.4029.

[12] Ye Zhou, Erik-Jan van Kampen, and QiPing Chu. Nonlinear adaptive flight control using incremental
approximate dynamic programming and output feedback. Journal of Guidance, Control, and Dynamics,
40(2):493–496, 2016. DOI: 10.2514/1.G001762.

[13] Hangxu Li, Liguo Sun, Wenqian Tan, Baoxu Jia, and Xiaoyu Liu. Switching flight control for incremental
model-based dual heuristic dynamic programming. Journal of Guidance, Control, and Dynamics, 43(7):1352–
1358, 2020. DOI: 10.2514/1.G004519.

[14] Ewoud JJ Smeur, Qiping Chu, and Guido CHE De Croon. Adaptive incremental nonlinear dynamic inversion
for attitude control of micro air vehicles. Journal of Guidance, Control, and Dynamics, 39(3):450–461, 2016.
DOI: 10.2514/1.G001490.

[15] Simon Hafner, Barzin Hosseini, Xiang Fang, and Florian Holzapfel. Online parameter estimation of the b-
matrix of a quadcopter in time-and frequency-domain. In International Conference on Guidance, Navigation
and Control, pages 2758–2769. Springer, 2022. DOI: 10.1007/978-981-19-6613-2_268.

[16] Simon F Hafner, Seyedbarzin Hosseini, and Florian Holzapfel. Excitation monitoring for online parameter
estimation. In AIAA SCITECH 2023 Forum, page 0039, 2023. DOI: 10.2514/6.2023-0039.

[17] Yu Liu and Luis G Crespo. Adaptive control allocation in the presence of actuator failures. Journal of Control
Science and Engineering, 2012:3–3, 2012. DOI: 10.1155/2012/502149.

[18] Simon S Haykin. Adaptive filter theory. Pearson Education India, 2002.

15Except where otherwise noted, content of this paper is licensed under
a Creative Commons Attribution 4.0 International License.

The reproduction and distribution with attribution of the entire paper or of individual
pages, in electronic or printed form, including some materials under non-CC-BY 4.0
licenses is hereby granted by the respective copyright owners.

https://doi.org/10.2514/1.28142
https://doi.org/10.1109/MED.2017.7984159
https://doi.org/10.2514/1.G006771
https://doi.org/10.1243/095441005X30379
https://doi.org/10.1002/acs.2341
https://doi.org/10.2514/6.2019-1923
https://doi.org/10.2514/2.4029
https://doi.org/10.2514/1.G001762
https://doi.org/10.2514/1.G004519
https://doi.org/10.2514/1.G001490
https://doi.org/10.1007/978-981-19-6613-2_268
https://doi.org/10.2514/6.2023-0039
https://doi.org/10.1155/2012/502149

[19] Tor A Johansen and Thor I Fossen. Control allocation—a survey. Automatica, 49(5):1087–1103, 2013.
DOI: 10.1016/j.automatica.2013.01.035.

[20] Stefan A Raab, Jiannan Zhang, Pranav Bhardwaj, and Florian Holzapfel. Proposal of a unified control strategy
for vertical take-off and landing transition aircraft configurations. In 2018 Applied Aerodynamics Conference,
page 3478, 2018. DOI: 10.2514/6.2018-3478.

[21] Jiannan Zhang, Pranav Bhardwaj, Stefan A Raab, Saurabh Saboo, and Florian Holzapfel. Control allocation
framework for a tilt-rotor vertical take-off and landing transition aircraft configuration. In 2018 Applied
Aerodynamics Conference, page 3480, 2018. DOI: 10.2514/6.2018-3480.

[22] Stefan A Raab, Jiannan Zhang, Pranav Bhardwaj, and Florian Holzapfel. Consideration of control effector
dynamics and saturations in an extended indi approach. In AIAA Aviation 2019 Forum, page 3267, 2019.
DOI: 10.2514/6.2019-3267.

[23] Wayne Durham, Kenneth A Bordignon, and Roger Beck. Aircraft control allocation. John Wiley & Sons,
2017.

[24] Michael W Oppenheimer, David B Doman, and Michael A Bolender. Control allocation for over-actuated
systems. In 2006 14th Mediterranean Conference on Control and Automation, pages 1–6. IEEE, 2006.
DOI: 10.1109/MED.2006.328750.

[25] Gene H Golub and Charles F Van Loan. Matrix computations. JHU press, 2013.

[26] Ratnik Gandhi and Amoli Rajgor. Updating singular value decomposition for rank one matrix perturbation.
arXiv preprint arXiv:1707.08369, 2017. DOI: 10.48550/arXiv.1707.08369.

[27] James R Bunch and Christopher P Nielsen. Updating the singular value decomposition. Numerische Mathe-
matik, 31(2):111–129, 1978. DOI: 10.1007/BF01397471.

[28] Matthew Brand. Fast low-rank modifications of the thin singular value decomposition. Linear algebra and
its applications, 415(1):20–30, 2006. DOI: 10.1016/j.laa.2005.07.021.

[29] James R Bunch, Christopher P Nielsen, and Danny C Sorensen. Rank-one modification of the symmetric
eigenproblem. Numerische Mathematik, 31(1):31–48, 1978. DOI: 10.1007/BF01396012.

[30] Gene H Golub. Some modified matrix eigenvalue problems. SIAM review, 15(2):318–334, 1973.
DOI: 10.1137/1015032.

16Except where otherwise noted, content of this paper is licensed under
a Creative Commons Attribution 4.0 International License.

The reproduction and distribution with attribution of the entire paper or of individual
pages, in electronic or printed form, including some materials under non-CC-BY 4.0
licenses is hereby granted by the respective copyright owners.

https://doi.org/10.1016/j.automatica.2013.01.035
https://doi.org/10.2514/6.2018-3478
https://doi.org/10.2514/6.2018-3480
https://doi.org/10.2514/6.2019-3267
https://doi.org/10.1109/MED.2006.328750
https://doi.org/10.48550/arXiv.1707.08369
https://doi.org/10.1007/BF01397471
https://doi.org/10.1016/j.laa.2005.07.021
https://doi.org/10.1007/BF01396012
https://doi.org/10.1137/1015032

	Introduction
	Plant Model
	Overview and coordinate system definition of the multicopter used as testbed
	Dynamics and kinematics of the multicopter

	Nominal controller design with adaptive CA
	NDI method-based control law
	Pseudo inverse-based CA module
	Adaptive augmentation by using RLS filter

	Rank one update-based efficient RLS filter
	Introduction of rank one update method
	Updating singular value decomposition of CA matrix in RLS filter

	Results analysis
	Tracking performance of the INDI controller with proposed adaptive CA
	Computational efficiency analysis of rank one update-based RLS filter

	Conclusion

