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ABSTRACT

Increase in autonomous systems now requires for these systems to work in close proximity of other
objects in their environments, with many tasks that need to be done on environment objects for eg.,
assembly, transportation, rendezvous, docking, or to avoid them like collision detections/avoidance,
path planning etc. In this literature review we discuss machine learning based algorithms that solve
the first step of vision-based autonomous systems i.e., vision based pose estimation. This paper
presents a critical review in advancements of 6D pose estimation using both 2D and 3D input data,
and compare how they deal with the challenges shared by the computer-vision based localisation
problem. We also look over algorithms with their applications in space based tasks like in-orbit
docking, rendezvous and the challenges that come with space-vision applications. To conclude the
review we also highlight niche problems and possible avenues for future research.

Nomenclature

𝐷𝐿 = deep learning
𝑅𝑂𝐼 = Region Of Interest
𝐶𝑉 = computer vision
𝐶𝑁𝑁 = convolutional neural network
𝐺𝑁𝐶 = Guidance Navigation and Control
𝐺𝐴𝑁 = Generative Adversarial Networks
𝐼𝐶𝑃 = Iterative Closest Point
𝑃𝑛𝑃 = Perspective-n-point
𝑃𝐸 = pose estimation
𝑅𝐴𝑁𝑆𝐴𝐶 = random sample consensus
𝐹𝐿𝑂𝑃 = Floating Point Operations
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𝑁𝑁 = Neural Network
𝑆𝐸 (3) = Special Euclidean group of 3D rigid body displacements

1 Introduction
6 Degree of Freedom (6DOF or 6D) pose estimation (PE) is the first step to many autonomous

vision-based systems and an essential field of research in Computer Vision (CV) applications like robot
manipulation [1], autonomous driving [2], construction [3] etc. The 6D information that we try to extract
from a target object are its coordinates in x, y, z and its orientation in terms of pitch, roll and yaw with
respect to the camera coordinate system. Machine learning solutions can use different kinds of inputs to
solve the pose estimation problem with 2D or 3D information i.e., RGB, RGBD and point cloud inputs.
These different inputs lead way for diverse applications and methodologies but share problems that are
associated with vision systems. All input information, 2D or 3D, face challenges of auto-occlusions,
inter/intra-category symmetry, lighting, unusual views, noise in input and generalisation over unseen
objects[4–6].
Pose Estimation has been a research section in computer vision for a long time, with older solutions
being geometrical inference based, i.e., they try to establish 3D-2D correspondences to regress 6D pose
of object. The best example for this is Key-point, ICP [7], RANSAC [8], which use extracted points or
features to solve for pose using feature mapping and matching. Simple in logic and implementation these
methodologies suffer from low convergence speeds and accuracy, as well as difficulties and high com-
putation times with complex geometrical features, thus these algorithms require a close initial estimate
making them impractical for real-time application but are still used as a last step refinement module.
With the recent growth of Deep Learning (DL) CV techniques, prior methods were made obsolete by
introduction of Template-based methods, which assess the target object as multiple representation from
different views and compare them against the observed object. This approach does provide high accuracy
in inter-class pose estimation but falls short to the occlusion, lighting and unusual view problems faced by
vision based approaches. To achieve robustness in such methodologies the object representation data-set
needs to be increased in size, diversity and the number of comparison, to give high accuracy results but
these increments lead to increase in computation demand and thus inference speed. Understanding these
short-comings DL in computer vision also introduced several other methodologies like Learning-based
methods, Bounding Box / Key-point and Perspective-n-Point (PnP) based, Regression based, Latent
Learning etc. The building block for these techniques is the introduction of feature mapping between
extracted features and 6D pose information using Convolutional Neural Networks (CNNs). The PnP1

algorithm has been used extensively in feature mapping between 2D features and 3D models of objects
and it does so by solving the camera projection problem. In Bounding box / Key-point based methods
CNNs predict a 2D to 3D bounding box and these bounding boxes are compared with the 3D CAD model
using the PnP algorithm. Other types of Learning based methods like Regression, which use a neural
network made up of multiple CNNs to directly regress the pose of an object, are very fast in inference
but require a large and diverse data-set to train upon and perform poorly on domain gaps as well extreme
or unseen conditions.
6D PE is also a challenge in space applications and operations as most control systems in space technology
are mostly remote-controlled and are moving towards autonomous systems given the harsh environmental
challenges of space and the increase in communication / response time over astronomical distances. The
necessity 6D PE comes because of close proximity operations like docking, rendezvous, de-orbiting
satellites externally, in-orbit assembly and collision avoidance. Most space applications use LIDARs [9]
for depth mapping (3D) as well as RGB input to provide high accuracy of pose and depth estimation.
But, new solutions are aimed to provide same high accuracy and fidelity information using 2D images in
an approach to get rid of LIDARs and the technical points of failure that they come with as well as the

1https://jingnanshi.com/blog/pnp_minimal.html
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respective weight and cost which are primary consideration in any space operation.
In this review paper we cover multiple approaches for the 6D pose estimation challenge using advance-
ments in machine learning and Deep Learning, with a highlight on similar implementations and solutions
that are in use for space applications. We cover major advancements in Pose Estimation with all kinds
of inputs i.e., RGB, RGB-D and Point Clouds. In conclusion we highlight the niche problems faced by
Vision-based systems still and propose new avenues for research and solution methodologies for 6D Pose
Estimation.
The paper is structured as follows : Section 2 explains the selection-ideology behind papers chosen
for review, Section 3 illustrates 2D image based solutions for Pose Estimation with subsections 3.1
covering Render based methods, 3.2 highlighting Key-point/Bounding Box methods and 3.3 focusing
on Learning-Based methods. Section 4 discusses methodologies with RGB-D and Point Cloud inputs.
Section 5 introduces the applications of similar solutions for space-based operations. Section 6 concludes
the paper with a highlight on the niche problems and short comings of the papers reviewed and possible
directions of future research.

2 Selection Methodology
To keep the survey concise while considering all forms of input data, we set rules to identify potential

papers for review and reject any outliers. The criterion’s set for paper selection have been described in
Fig.1, showcasing the PRISMA literature review collection.

1) To keep the research up-to date, papers published in 2016 and after will be considered as this was
the boom in the use of DL in CV and PE challenges.

2) We select papers that introduce new techniques or metrics rather papers that work on optimising
an already present solution. Example, EPro-PnP [10] which improves upon its previous v1
architecture by adjusting network weights and initialisation, in the improved v2 publication.

3) Papers to be considered need to be implementable in real-time operations, Pose estimation in
GNC needs to have fast real-time inference speeds.

4) In our selection of Point Cloud based methods we discuss pose estimation techniques as well as
state-of-the-art point cloud completion tasks to better understand the integration of 3D information
and geometry based operations.

5) Keywords used for search - ’6D Pose Estimation’, ’3D Localisation and Tracking’, ’Pose Esti-
mation’, ’Spacecraft Pose Estimation’, ’Point Cloud Registration’, ’Point Cloud Pose Estimation’,
’Vision based robotic control’- were used for searching and refining papers from different publi-
cations.

6) Vision based research papers have been taken from the IEEE Computer Vision and Pattern
Recognition Conference (CVPR)2, ArXiv3, ScienceDirect4, MPDI5

2.1 Improvement in Computational Resources
We also take into account the change in computational strength of processors and new possible

application with GPU accelerated hardware. Lentaris Et al.[11] goes over a critical review of embedded
processing systems for space applications. For an embedded system to be certified space-worthy there
are a few import criteria such as radiation resistance, working temperature envelop amongst many so that
the system can operate fully in harsh conditions of space. In [11], we can see the highest performance
of an embedded system is capped in the GFLOPS (Giga/Billion Floating Point Operations) range. The
highest performance metric we see in terms of FLOPS is 900 MFLOPS(Million FLOPS) in CPU systems

2https://cvpr.thecvf.com/
3https://arxiv.org/
4https://www.sciencedirect.com
5https://www.mpdi.com/
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Fig. 1 PRISMA systematic Review

and a high of 38 GFLOPS in FPGA based system architecture. AiTech6 have verified the NVIDIA Jetson
TX2i7 is space worthy with radiation resistance, suitable temperature and G-force envelop. This is a
giant leap in computational strength possible for space applications as the TX2i-Nano being a smaller
computing unit still provides 1.3 TFLOP (Tera/Trillion FLOPS) which is a minimum of 100X better
than previous hardware8. With such computational strength it is possible to implement more accurate
and flight worthy AI systems on board for autonomous operations. Heavy machine learning algorithms
usually require computing strength in the 10-100 GFLOPS range for real-time inference, which leaves
us vast amounts of computational strength for stronger and better navigation and control systems further
down the line.

The conclusion of the selection leaves us with a total of 47 research papers and their distribution
according to methodology and input is show in Fig.2, and Fig.3 shows the overall distribution of papers
and their subcategories.

3 Pose Estimation using 2D Input : RGB

3.1 Template/Render-based Methods
These approaches also called template-based methods due to the creation of a database using either

active or passive rendering [6] and are usually a multi-stage process with multiple neural networks in
series and an active rendering system that runs internally with the neural network architecture or is saved
as a database. The approach can be broken down in to a few simple steps. The first step is extracting
image features from the input using a feature extractor like ResNet [12], to extract 2D correspondences
or features and semantic maps. These maps are compared with images of a 3D CAD model rendered

6https://aitechsystems.com/space-products/
7https://developer.nvidia.com/embedded/jetson-tx2i
8https://www.eenewseurope.com/en/jetson-gpu-space-qualified-for-ai/
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(a) Methodology based - Latent, Render,
Key-point, LB(Learning Based)

(b) Input Based - RGB, RGB-D, Point Cloud

Fig. 2 Distribution of collected papers based upon methodology (left) and Input (right)

Fig. 3 Mind map of review distribution

online, to find the closest match and predict pose as SE(3) using the render properties and similarity.
DPOD [12] uses PnP and RANSAC to compute the initial pose between these correspondences and is
further fed into a RGB-based pose refinement module. The pose refinement module compares rendered
pixel values and observed pixel values to further refine the initial pose estimate. DEEPIM [13] is a pose
refinement module with its prerequisite being an available 3D CAD model and an initial pose estimate. It
uses the input image, rendered image and mask and an initial pose to form a feature map which is further
fed to multiple CNN’s to predict pose and translation separately.
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Fig. 4 Schematic representation of Render-based approaches [6]

These methodologies come with their own pros and cons, as they perform well with exhaustive 3D
CAD based data sets and for texture-less objects but are highly sensitive to lighting or occlusions as
This type of disturbance or noise is difficult to be included in Render-based models, and they change the
similarity index between rendered image for pose estimation versus the observed image. The repetitive
task of rendering images for each cycle of inference makes these algorithms computationally slow and
not easily applicable in real-time environments. To improve upon this computation cost of rendering
instances ImplicitAAE [14] introduced use of Augmented Auto-encoders that use active rendering to
train the auto-encoder to reconstruct SE(3) pose of the object from randomly generated images of the
CAD model, and the encoder outputs are saved into a code-book of representations and respective orien-
tations. The trained encoder-decoder architecture is given the observed image and semantic map to create
a representation and use cosine similarity to regress the pose of the object with an optional depth map
based Iterative Closest Point(ICP)-pose refinement module, to increase accuracy. Though it does not use
active-rendering it uses a database based on embeddings generated by the encoder thus also referred to as
Template-based methods. Marulo and Tanzi [6] go into further detail of differentiation for template based
methodologies, and are not considered for this review due to their higher computation times and lack of
implementation in real-time applications. RNNPose [15] improves upon previous render based methods
by including 3D information by extracting features from rendered image of CAD model, initial pose
orientation of the CAD model (based on a initial pose estimate) and the observed image. The features
from the observed image and rendered image are combined to compare against the 3D correspondences
using a Gated-recurrent-NN and differentiable LM (Levenberg–Marquardt) optimisation with rigid body
constraints to update initial pose estimation with each iterative step in relative SE(3) transformations.
This allows [15] to perform better in occluded and unusual view or lighting circumstances over previous
methods [14], [12], [13], by keeping account of previous poses and their correspondences which helps
improve accuracy during occlusion and noisy scenarios. Even with the advances, the high computation
cost of rendering, variety of lighting conditions and occlusions still stand as challenges to render based
approaches. There are other methodologies like CPS++ [16] and CloudAAE [14] that use a differentiable
render for training but not for inference and evaluation, and will be discussed in Sec.3.3. Approaches [15],
[14], [12], [13] are compared over common data-sets that have been used for training and evaluation,
i.e., we compare their performance metrics over the LINE-MOD [17] and Line-MOD-Occluded [18]
data-sets in Table 1 over the ADD-S metric which is an ambiguity-invariant pose error metric which
takes care of both symmetric and non-symmetric objects into an overall evaluation. We will be using the
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ADD-S metric to do performance comparisons in the review.

METHODS DPOD [12] DEEP IM [13] Implicit AAE [14] RNNpose [15]

YCB-V [5] 76.3 81.9 - 83.1
Linemod [17] 95.15 88.61 71.8 93.7
Occlusion [18] 47.3 - - 60.65

Table 1 Comparison of Template/Render Based Methodologies over the ADD(S) metric

As we can see RNNPose [15] performs better as an overall among different datasets, with methods
like [13] and [14] that cannot perform well under occlusions as they have no first hand understanding
of the occlusion or the target object. Random Occlusions are the biggest challenge for Render based
methodologies as any kind of noise or occlusion inclusion in the render degrades overall performance,
while improving Occlusion performance slightly. DPOD [12] is also able to perform in Occluded
environment using its correspondence generator before rendering the CAD model to help with pose
regression. This is the overall drawback of Render-based methods, the need for clean and occlusion
free-environments supplemented with pre-existing CAD models for rendering. These donot allow for
robust, computationally light or accurate prediction models as the observed image maynot be a 1:1 replica
of the CAD model. To improve upon this Feature-based methods try and extract image/target features to
regress pose.

3.2 Feature-PnP-based Methods
Key-point/bounding box based methods depend on feature extraction from the observed image, these

features can be key-points or bounding boxes. The extracted features are then compared with an annotated
3D model of the target object to regress pose using a PnP solver for 2D-3D matching. Feature based
methods are usually a multi-stage pipeline with Object-detection, key-point extraction, 2D-3D matching
and a pose refinement module for better accuracy. These methodologies deal with occlusions well as
CNN’s are exploited to predict occluded key-points and still continue with the 2D-3D mapping. A
pose-refinement module is added to aid with occluded pose prediction stability [19].
These methodologies work well with occlusions but fall short when the target object is symmetric or
texture-less, as the accuracy of key-points detected and the key-points themselves being unique allow for
a close 2D-3D match to predict 6D coarse information. Lack of distinct features leads to lower accuracy
of key-point detection and thus an overall performance degradation in pose estimation. To extract a final
pose estimation the 6D coarse prediction is fed into a pose refinement module.6D Pose w/o PnP [20]
takes on the challenge to do bounding box based pose estimation without using a PnP solver. To do this
they define a pose and translation parameters in terms of extracted features to project the predicted 3D
bounding boxes in 2D. They provide state-of-the-art results and a high computation speed of 17ms [20]
and is considered a Learning based methods more-so than a Feature based method.

HybridPose [21] is a perfect example as it extracts 3 different kinds of features, Key-points, edge
vectors and similarity correspondences. These features are used to form an initial prediction which is
optimised using a generalised German-Mcclure (or GM) robust function [21] to solve for non-linear pose
refinement.YOLOPose [22] and POET [23] are similar applications of transformer architecture for pose
estimation. Both methodologies use a ResNet [24] neural network as a feature extraction backbone, after
that differ in the way the outputs of the extractor are used. YoloPose [22] uses a simple architecture
of encoder-decoder-prediction head using the bounding boxes, class probabilities, output embeddings or
Canonical 3D points.All decoder embeddings are a set of class probability, Rotation estimate, translation
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Fig. 5 Schematic representation of Feature-based approaches [6]

estimate, key-points and bounding boxes, which are fed into a FFN to predict pose and optimise network
by using different losses for all outputs of the set, with a conditional pose loss for symmetrical object.
[23] on the other hand uses extracted bounding box to incorporate positional encoding for dynamic object
queries to the decoder, while using the features extracted for attention generation. The output of the
decoder is fed into another FFN to separate translation and rotation for each object query. PrimA6D
[19] is another fully transformer based architecture that uses a Variational Auto-Encoder (VAE) based
encoder decoder structure with 2 separate decoders for primitive(axis) reconstruction and an object re-
construction. Both the decoders are trained using a GAN methodology. Key-points are extracted from
the reconstructed primitive using a [24] feature extractor and pose is regressed using a PnP solver on the
key-points extracted. It improves upon previous methods by ignoring the complexity of the 3D structure
and converting it down to a primitive-axis-representation which allows for more accurate and fast PnP or
ICP solution. This primitive-axis-representation deals with occlusions and disturbances robustly as its
more accurate to predict 3 points in a mathematical relationship than occluded key-points. [25] utilises
a YOLO [26] architecture for key-point detection to estimate pose using a given 3D CAD model of the
target object using PnP. In their study they summarise with great performance in 2D localisation but fall
short in depth and yaw estimation as a short coming of 2D image information, verifying these results and
drawbacks with flight experimentation. [19–23] are compared in terms of performance metrics over the
common data-set LINEMOD [17, 18] for [19–21] and the YCB-V [5] data-set for [22, 23] in Table 2.

METHODS Prima6D [19] YOLOPose [22] POET [23] HybridPose [21] w/o PnP [20]

YCB-V [5] 94.43 91.2 92.8 - -
Linemod [17] 97.62 - - 91.3 92.68
Occlusion [18] 79.2 - - 74.5 -

Table 2 Comparison of Feature (Key-point/Bounding Box) Based Methodologies over the ADD(S) metric

As we can see in Table 2, [19] out-performs all other methodologies over every dataset. This is
due to its ability to deal with complex geometries and occlusions in a simple yet robust manner using
primitive representations. Transformer based models deal better with symmetrical objects with the help
of positional encoding, and attention based geometry learning. With the boom in Deep Learning and
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speed of computation solutions like [22, 23] try to bridge the gap between Feature based methods and
purely Learning based methods with the removal or reducing the computation load for inference based
pose refinement steps like PnP, RANSAC or ICP.

3.3 Learning Based Methods
Learning based methods try to regress the pose of target object directly from the input image. Since

these methods depend completely on CNN’s they require high amounts of training data and training
time to provide good accuracy with faster inference times. Learning based methods can have either
one-stage pipelines like [27–29] or multi-stage pipelines like [5, 10, 30]. While One stage algorithms try
to predict pose directly by learning image features and their co-relation to output by using heat-maps and
correspondences, multi-stage networks incorporate different extracted features like key-points, colour-
coordinate maps, bounding boxes etc. to regress a final pose.

Fig. 6 High level representation of Learning based methods [6]

PoseCNN[5] handles the task of 6D pose estimation by combining outputs of three different tasks
purely using CNN’s. It carries out semantic labelling, translation regression and rotation regression and
then incorporates these outputs with respective Region of Interest (ROI) to regress the final pose. It is
robust to occlusions and lighting by combining the outputs of semantic, translation and ROI predictions
to predict the final pose, giving state of the art results on the [5] and [18] data-sets. The performance
of the PoseCNN algorithm increases with an additional ICP based pose refinement module. YOLO6D
[28] takes the challenge one step further by proposing a CNN architecture for single-shot 6D pose
estimation. The pipeline extracts object centroids, 8 bounding box points, and using these 9 extracted
or predicted points as control points, [28] solves a PnP algorithm for pose estimation all in a single shot
without any pose-refinement module giving it a high inference speed of 20ms. Similarly as discussed in
3.2, [20] uses a similar CNN structure with the novel introduction of a Collinear equation layer and a
shared backward propagation process to do avoid using PnP and thus giving it its high speed inference.
Pix2Pose [27] improves the methodology for 2D-3D correspondences by converting a 3D CAD model to
a normalised-coordinate colour coded image, and uses a one-stage CNN pipeline to predict the the same
and a error prediction from the input image. It uses the predicted normalised map and predicted error
map with a iterative PnP-RANSAC solver to predict pose. It also leverages upon the advancements in
GAN’s for training using synthetic data. A drawback being the need for bounding box detector module
to provide the model with necessary inputs. SSD6D and BB8 [30, 31] on the other hand gets rid of
the multiple re-sampling of the image by extending the Visual Geometry Group (VGG) backbone [32]
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to directly regress class, pose and respective confidence scores. Similarly EfficientPose[29] build upon
extending the EfficientNet-BiFPN (Bidirectional Feature Pyramid Network) [33] with addition of rotation
and translation prediction heads (networks). It also carries out an iterative pose refinement using depth-
wise-separable convolutional layers, thus avoiding the computationally expensive PnP, ICP or RANSAC
refinement techniques.
With learning based methods, a lot of annotated training data is required and still has low generalisation
and the PnP solution has been a challenging one for complex, large structures. To improve upon these [10]
proposes a probabilistic PnP layer for general end-to-end pose estimation, which outputs a distribution
of pose with differentiable probability density on the SE(3) manifold. The 2D-3D coordinates and
corresponding weights are treated as intermediate variables learned by minimising the KL divergence
[34] between the predicted and target pose distribution.

METHODS EfficientPose [29] PoseCNN [5] Pix2Pose [27] BB8 [30] SSD6D [31]

YCB-V [5] - 75.9 - - -
Linemod [17] 97.35 - 72.4 89.3 90.37
Occlusion [18] 83.98 78 32 43.6 55.95

Table 3 Comparison of Learning Based Methodologies over the ADD(S) metric

Compared to [5, 27, 30, 31] that focus on a close initial pose-approximate, to reduce the computation
time and load required by modules like RANSAC, PnP and ICP. EfficientPose [29] utilises only image
features and iterative NN-based refinement to predict and refine initial pose estimate thus being compu-
tationally lighter and a more accurate pose-refinement. The EfficeintDet [33] backbone utilises feature
propagation and ROI based multiple predictions, allowing it to deal with occlusions well using local and
global image features. The trade-off lies between the number of pose-refinement steps and accuracy with
inference speed. The EfficeintPose model proves robust by performing well with a single refinement
iteration as shown in metrics of 3.

4 Pose Estimation using 3D Input

4.1 RGB-D Input
As the name suggests RGB-D methods include a depth mask or map as an input to the system. It

greatly improves performance as depth is an essential information that monocular vision systems cannot
extract accurately. With the addition of depth as an addition channel of information, RGB-D methods
focus on information fusion between depth and RGB treating them as individual and independent sources
of information. DenseFusion [35] introduces this methodology with separate feature extraction networks
for depth and RGB information, to extract depth based point cloud embedding and RGB based colour
embeddings (instance segmentation), and then fuses them in a pixel-wise manner with a global average
feature, for per-pixel prediction of rotation, translation and confidence and giving out final results us-
ing non-max suppression9 and an iterative refinement module. The research highlights the significant
improvement in performance (over 10%) over SOTA RGB based methodologies[35–37]. In the same
year,2019, MaskedFusion [36] proposed a similar methodology about feature fusion between RGB and
Depth information, it improves upon [35] by improving the feature extraction and fusion step by extracting
3 different feature sets from depth, RGB and segmentation mask, to create a complete feature set while
ignoring unnecessary information. This feature set is used to predict an initial pose and use a refinement
module to give the final output. It improves its performance significantly over [35] by the application of

9https://learnopencv.com/non-maximum-suppression-theory-and-implementation-in-pytorch/
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letting go of unnecessary information during feature extraction and pose estimation. To bridge the gap
between RGB-D methods and 2D methods LatentFusion [38] utilises a embedding-input active rendering
system, where the network is trained to predict depth maps from latent representations of RGB and seg-
mentation mask. The system further uses this depth prediction with RGB and mask to predict pose in an
iterative way with the help of refining using the rendering system. The down-side of the algorithm being
it requires multiple view points of the object to create a latent representation. This methodology acts
as template-based method with an active rendering for refinement as explained in Sec.3.1. FFB6D [37]
improves upon Dense-Fusion [35] by implementing bi-directional fusion modules (see Fig. 7) between
the two networks (RGB and Depth/point cloud feature extractor) allowing for sharing local and global
information during the encoding and decoding of features to allow for better appearance and geometry
learning. The research stands as the SOTA in pose estimation against other RGB-D and RGB methods,
without the need for a pose-refinement module. The fusion of information during feature extraction
is done by information fusion between 2D to 3D and vice-a-versa using nearest-neighbour mapping
between the 2 feature sets, while sharing prior information as well using skip-residual connections in
the architecture. These features are used to predict 3D key-points of the object and predicts 6D pose as
a Least-Squares Fitting problem [39]. A slightly improved and SOTA implementation can be seen in
PVN3D [40].

METHODS FFB6D [37] LatnetFusion [38] MaskedFusion [36] DenseFusion [35]

YCB-V [5] 93.1 - 93.3 93.1
Linemod [17] 96.6 87 97.8 94.3
Occlusion [18] 66.2 - - -

Table 4 Comparison of RGBD Methodologies over the ADD(S) metric (Average Distance between point
clouds)

RGB-D methods out-perform RGB methods purely because of the inclusion of depth information,
which RGB methods have to predict or regress to perform 6D pose estimation. Table 4 compares [35–38]
and highlights their increase in performance over RGB methods over the same data-sets. [37], [36], [35] all
perfomr similar on the YCB-V [5] dataset, with FFB6D [37] and MaskedFusion [36] performing better on
the LineMod [17] dataset. MaskedFusion reaches this high accuracy performance by combining features
of RGB and Point Cloud using the [41] architecture to introduce structural information during PE, with
FFB6D following the [29, 33] methodology by feature-fusion as shown in Fig.7 bottom. This also allows
for good performance under-occlusion but still not at par with earlier discussed 2D methodologies, as
occlusions remove part of the 3D information, and these algorithms do-not include complete geometrical
structural learning, as they treat RGB-D as two separate channels of information rather than a single data
structure. Fig. 7 highlights the overall ideology behind RGB-D methods using the Dense-Fusion [35]
and FFB6D [37] network architectures.

4.2 Point Clouds
Point Cloud based approaches differ from RGB-D methods as they treat point clouds i.e., x,y,z as

the input information rather than separating the 2D projection and Depth information as in [35] and
other RGB-D methodologies. We discuss different point cloud based tasks aside from Pose Estimation to
further understand Point cloud implementations and how this information is exploited. [41–45] discuss
advancements in Point cloud based tasks and transformer based latent learning methods, and [46–50]
discuss SOTA pose estimation methods using 3D point cloud data.
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Fig. 7 (Top) Schematic of Dense-Fusion[35] architecture representing the basic ideology behind RGB-
D methods, (Bottom) FFB6D [37] architecture, highlighting the novel bi-directional information fusion
methodology.

4.2.1 Latent-learning with Point Clouds
Transformers in Natural Language Processing (NLP) [51, 52] introduced the concept of positional

encoding and context understanding with local and global features over the complete sentence. This
same idea was implemented with Point Clouds to treat them as an ordered set of data. PointNet [41] and
the use of T-Nets which are special NN’s based on Spatial Transformer Networks, which learn consistent
transformations between point clouds, introduce converting point-clouds as features for segmentation
and classification tasks. To improve upon [41], Point Cloud Transformer [42] introduces transformer
architecture for point cloud representations, with attention networks allowing for relevant global and local
feature collection. PCT [42] set the benchmark for transformer based point cloud methods and researches
[41, 43, 44, 49] etc. PointBERT [43] and PoinTr [44] extend upon the idea of representation-learning point
cloud tasks by introducing Geometry-aware Transformers [44] and Masked Learning [43]. These ideas
allow avenues for representation based learning with point clouds instead of inference-heavy methods like
ICP [7], RANSAC [8] and PnP [53]. As we can see in Fig.8 the PoinTr architecture focuses on rebuilding
observed point cloud features using an Geometry-Aware encoder-decoder architecture, to predict the
missing points in a reconstruction task Fig.8 shows the conversion of point clouds to embeddings and
how they are used for latent learning using the [44] network architecture. ConDor [45] takes advantage of
this latent learning to do canonicalisation of point clouds, i.e., completing point clouds and understanding
the overall reference structure of the source point clouds. These studies indicate the useful application of
latent/representation learning methods for point clouds and we see how they have been implemented for
the pose estimation task.

4.2.2 Pose estimation with Point Clouds
PointVoteNet [49] utilises the PointNet [41] architecture for part-segmentation to predict pose via a

scoring and voting system using a CAD model as reference.PointPoseNet [50] introduces a transformer
architecture to predict 3D point wise vectors using extracted bounding boxes from a [26] backbone, util-
ising point-wise 3D vector prediction based on the part-segmentation thus infers more local information
compared to [49]. It allows the PointPoseNet to predict hidden and invisible 3D key-points and optimise
selection by using a preemptive RANSAC and Furthest Point Sample. Cloud AAE [47] implements the
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Fig. 8 The PoinTr[44] architecture representing the uses of latent learning for point cloud completion tasks,
i.e., generating and completing incomplete embeddings to recreate the point cloud

first latent information based pose and translation prediction system by using Augmented Auto-Encoders
(AAE) to create latent embeddings of a point cloud, and use Multilayer Perceptron (MLP) for pose and
translation prediction. Plum [48] is an introduction of reward based look-up method for point cloud
registration, and uses a reward based optimisation rather than a match-loss metric making it more robust
than other methods like [7] and its variants. It stands as a bridge between inference based pose estimation
methods and template-based deep learning methods, providing state of the art results and computational
speeds. To improve upon the idea of latent learning, Query6DOF [46] implements latent embedding
comparison and regression to predict pose using point clouds. It does so by creating a code-book of point
cloud embeddings and their respective pose information, and compare incoming observed embeddings
to find the nearest match and refine the respective pose. It is an implementation of Template/database
type methodology but reduces computation load, thus increasing inference speed as its is comparing
latent embeddings, rather than complete point clouds. A drawback of the system is the need for immense
training data to create a sufficient data-base that can perform in robust conditions of occlusion, unusual
views and complex 3D structures.

METHODS PVN3D [40] CloudAAE [47] PointPoseNet [50] PointVoteNet [49]

YCB-V [5] 92.3 94 93.2 -
Linemod [17] 99.4 95.5 98.4 96.3
Occlusion [18] - 66.1 79.5 52.6

Table 5 Comparison of Point Cloud based Methodologies over the ADD(S) metric (Average Distance
between point clouds)

Table 5 shows how [47] is the simplest implementation of latent-learning based PE, an encoder
-decoder architecture than regresses pose directly from the latent embeddings, providing comparative
results to SOTA RGB methods in Sec.3, specially under occlusion. More advanced methods like
PointPoseNet [50], perform better overall and significantly better under occlusion because of its point
cloud based key-point prediction based on unit-vector predictions and pose matching using least-square
fitting. The comparatively low performance in occlusion to 2D based methods is because of the lack
of complete 3D information. To improve performance combination of point cloud reconstruction and
then pose estimation may provide better results for occluded and clear views. Point cloud based pose-
estimation methods are not widely used because of their computational expense, but with deep-latent
learning based methods these computational needs can be reduced and used for real-time applications.
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5 Pose Estimation in Space Applications
Most pose estimation methodologies in space applications like to depend on 3D information using

LIDARS as 3D information based estimation is superior to 2D information. Most space based sys-
tems usually have a LIDAR or some form of laser range scanner[54–56]. There are 2D methodologies
that have been proposed for uncooperative pose estimation. [55] major contribution was on the use of
Photonic-Mixer Device (PMD) Camera that allows for 3D scan matching with the model of the space
craft available. The paper does pose estimation as a Least Square Fitting Problem [39], focusing on
the calibration and data-processing from the PMD camera. Cassinis and Fonod [57] highlights the use
model-based matching and use of inference level algorithms like ICP, PnP and RANSAC with either
direct 3D input or synthesised features from 2D images. Pesce and Opromolla [58] is an example as
it extracts major features from a 2D image and uses RANSAC aided with PCA (Principal Component
Analysis) and solves for pose using a EPnP solver [59]. There are multiple 2D methodologies that try to
regress pose directly from 2D image feature maps like, [60–62] are methods that regress pose directly
from feature maps extracted from a 2D image using pre-trained networks[24, 63] for their high accuracy
and performance over generalised vision based tasks.
Researchers also try to overcome the the lack of annotated data in researches [64–66] that intro-
duce synthetic data generation platforms using open source software like Blender and Unreal Engine.
URSONet[65] focuses on creating a realistic data-generation platform that overcomes the domain gap
between synthetic and real data. They use a CNN backbone for feature extraction and regress translation
in x,y,z and pose using probabilistic quaternion fitting, falling into the group of learning-based methods.
Volpe and Circi [66] on the other hand try to extract features using the KAZE algorithm [67], K-means
clustering and RANSAC, and track them using the Kande-Lucas-Tomasi feature tracking algorithm [68].
Sharma and D’Amico [61] uses a similar feature detection for bounding box detection and solves pose
as fitting wire-mesh model of the target in the bounding box problem. LSPNet [69] follows a similar
approach but regresses pose a quaternion directly using the ROI’s and bounding boxes generated. SU-Net
[70] improves upon feature-learning methods by concatenating features using a residual-skip fusion ar-
chitecture that they introduce as DR-U-Net, an improvement over the original U-net algorithm. All these
algorithms are prone to problems faced by 2D vision based systems, auto-occlusions, lighting etc., [71]
tries to overcome these challenges by introducing multi-dimensional loss function by integrating 2D-2D
feature matching loss, 2D-3D key-point matching loss using a PnP solver and 3D-3D pose regression.
This essentially removes any refinement modules like ICP, PnP or RANSAC as the pose is refined at 3
different stages i.e., initial pose estimate from 2D feature match loss which is refined using 3D key-point
matching and finally direct numerical losses between poses. This allows for the network to improve its
prediction on all 3 levels. Vela and Fasano [72] make use of feature detection algorithm to detect and
localise arUco markers on the satellite and do pose estimation by doing a model reference matching
treating the markers as key-points. Zhang and Hu [54] stand out as a pose estimation algorithm as it tries
to exploit latent representation learning by comparing ground truth and observed representations of point
clouds, to regress pose while updating the ground truth with each iteration to regress relative change in
pose after initialisation. They use an ICP refinement module to improve accuracy of estimation after
initial pose estimation by the algorithm.
The challenge for using machine/deep learning algorithms is their lack of flight worthiness i.e., some
questions regarding AI that need to be answered regarding technical robustness, transparency and ac-
countability of decision making, amongst many. For this reason researches like [60–62, 69, 70] become
impractical because of their black-box like implementations, though allowing them high inference speeds
which is an important factor. Some approaches fall short because of their computational or physical de-
mand not being met by onboard systems or lower inference speeds like feature-based matching methods
like [55, 72], which require special ArUco markers. A lot of 2D methodologies fall short in estima-
tion accuracy as we discussed earlier that 3D information triumphs 2D as depth is difficult estimate by
a monocular system. [54] allows for a new application using latent-learning for pose estimation, but
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with their iteration-wise updated ground truth, it maybe difficult for the algorithm to deal with sudden
uncertainties as it loses track of the original ground-truth information.

6 Conclusion
The pose estimation review over 2D and 3D methodologies reveals that pose derived from 3D

information is always more accurate than that regressed from 2D information. This however does not
overcome the advantages that camera systems have over LIDAR based systems in terms of reliability,
cost, weight etc. The problems faced by 2D information systems remain constant as any disturbance in
the image is a hindrance to the incoming information which is used to estimate pose. Some of these
problems are occlusions, auto-occlusions, lighting conditions, unusual views, lack of annotated data. 2D
methods still try to overcome these challenges by using feature-fusion [29], iterative-refinement [15],
pose-tracking [19] etc. 3D methodologies on the other hand used to be computationally expensive and
require an initial pose estimate which still doesn’t guarantee fast or correct convergence of the pose. That
is why most solutions use these as refinement modules on the last step. Under occlusion 2D methods
currently perform better than 3D methods, as 3D methods do-not try to recover any lost information
as they are not treated as complete information structures. With the recent growth in deep learning
methodologies for 3D information like point clouds, it is established that point clouds can be reconstructed
with as little as 5% of the complete point cloud available using latent representation learning[42–46, 54].
Inspired by these methodologies we could propose a new pose estimation methodology that leverages
on latent-representation learning for direct pose estimation. Our idea is to translate the mathematics of
rigid body transformations to latent representation state using Wasserstien Metrics [73], as Wasserstien
Metrics are also known as optimal transport solutions which output the conversion of one distribution
to another, working similar to rigid body transformations where our transformation matrix may act as
a Wasserstien metric. This allows for the proposed algorithm to establish direct relationship between
the latent representation state and inference level data (point cloud), making proposed algorithm flight-
worthy, computationally inexpensive and accurate as Wasserstien Metrics are proved to be real distances or
Euclidean distances. Leveraging on the point cloud completion thus, embedding completion methodology
allows us to overcome problems that trouble vision based systems in the first place, i.e., occlusions,
lighting, lack of data, etc.
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