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ABSTRACT

A simple single-frame quaternion estimator is introduced where two vector observations are
deterministically processed. This estimator is amenable to analytical expressions for the bias
and the covariance matrix of the estimation error under white noise assumptions in the body
and reference vectors. The statistics are developed in four dimensions both for the additive and
multiplicative quaternion errors, before being reduced to three dimensions. The exceedingly
simple structure of the estimator is instrumental in reaching analytical expressions and a thorough
treatment of its singularities. Moreover, the impact of normalization of the quaternion estimate
is studied in generic terms clarifying a misconception about the singular nature of its covariance.
The estimator’s error analysis is tested for statistical consistency and its accuracy is illustrated via
extensive Monte Carlo simulations. Results show that the proposed estimator performs as well or
better than a state-of-the-art similar quaternion estimator with about half the computation burden.

Keywords: Attitude quaternion, vector measurement, bias and covariance analysis, quaternion normalization

Nomenclature

q = true quaternion
r𝑖 = reference vector (𝑖 = 1, 2)
b𝑖 = body vector (𝑖 = 1, 2)
B = body coordinate frame
R = reference coordinate frame
q̂ = normalized quaternion estimate
𝚫q̄ = additive unnormalized quaternion error
𝚫q = additive quaternion error
𝜹q = multiplicative quaternion error
𝑃
𝚫q = covariance matrix 𝚫q
𝑃
𝜹q = covariance matrix 𝜹q

1 Introduction
Attitude determination is critical to many aerospace missions and has several decades of history.

The quaternion of rotation [1, p. 758], a singularity-free minimal attitude representation, is known
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to present excellent numerical and analytical properties and has become very popular for designing
attitude estimators. An appealing advantage of single-frame attitude estimators is the lack of sensitivity
to initial conditions since they provide global rather than incremental estimates. Rooted in the Wahba
problem [2], the quaternion batch algorithm known as the q-method, early reported in [3], has given rise to
sophisticated versions aiming at providing closed-form solutions and reducing the computational burden,
e.g. [4–6] to cite a few. An error analysis of the q-method is revisited and extended to non-unit and noisy
reference vectors in [7]. Excellent surveys of algorithms and error analyses can be found in [8] and [9,
Chap. 5]. The q-method and related algorithms involve the solution of symmetric eigenvalues problems
in dimension four, with computation burdens that naturally increase with the number of observations.
Furthermore, there is a growing class of very small satellites, a.k.a. nanosatellites or CubeSats, that
accommodate two sensors only onboard, e.g. a magnetometer and a Sun sensor. Early works in this
realm are still used nowadays. The TRIAD estimator uses exactly two vector measurements and devises
a virtual third one via an orthogonalization process in order to estimate the attitude matrix [10]. A
covariance analysis of TRIAD for a multiplicative error in terms of the Euler vector is presented in [4].
A generalized TRIAD algorithm is introduced in [11] via gain optimization. Reference [12] presents
an optimal attitude matrix estimator from two vector measurements in the realm of the Wahba problem.
In [4] a closed-form expression of the QUEST algorithm is developed for the case of two observations.
In [13] the EULER 2 estimator utilizes the Rodrigues formula for reconstructing the Euler axis/angle
parameters and the attitude matrix. It invokes optimization of Wahba’s loss function in the case of noisy
measurements. It exploits a coplanarity condition of the measured and predicted vectors towards the
development of analytical formulas. Reference [14] introduces a quaternion parameterization given a
single vector observation. The degree of freedom is an angle around the observation. Several methods
are devised for analytical determination of the attitude quaternion given two observations. Interestingly,
the quaternions were manipulated as classes of equivalence where the elements are collinear but not
necessarily unit-norm. Motivated by the insight provided in [14], an optimization method on the degrees
of freedom in the quaternion parametrizations related to two observations is devised in [15]. Very efficient
algorithms emerged: an optimal one, more accurate and as fast as TRIAD, and a suboptimal one, faster
and as accurate as TRIAD.

This work is concerned with the development and analysis of a very fast quaternion estimator from
two vector observations. It thoroughly addresses the singularity cases via sequential rotations, as noted in
[15], it is preferable to choose a single desirable rotation as early as possible in order to save computations..
A deterministic error analysis is performed that lends itself to analytical expressions for the biases and
covariances of the quaternion multiplicative and additive errors. Hinging on insights from [16], the
quaternion is sought as the unique solution to a set of orthogonality conditions that involve simple
linear expressions of the measurements. This approach fundamentally differs from [14, 15] because the
quaternion is not sought in the space of some basis, and from [5] because the orthogonality conditions
do not require solving for the optimal Wahba’s loss value. The simplicity of the estimator also enables
a thorough deterministic and random error analysis. It sheds additional light on the various nonlinear
effects in quaternion estimation, including normalization. The analysis is carried out in four dimensions
both for multiplicative and additive errors and lends itself to second-order and fourth-order expressions for
the biases and for the errors covariance matrices, respectively, in terms of the measurement noises. The
consistency of the approximations is verified via extensive Monte-Carlo simulations for representative
test cases. Different Monte Carlo simulations are run to evaluate the proposed estimator’s performances
in terms of accuracy and computation burden. The novel estimator performs as accurately and twice as
fast as one of the fast algorithms.

This paper is organized as follows. Section 2 presents preliminary results that are used in Section 3
for estimating the attitude quaternion. Section 4 addresses the singular cases via sequential rotation.
Section 5 is concerned with the error analysis. Section 6 presents numerical results, and conclusions are
drawn in Section 7. Detailed developments and proofs appear in the Appendix.
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2 Preliminaries
This section follows Ref. [16]. Let b and r denote the projections of an ideal noise-free vector

measurement on a body coordinate frame and a reference coordinate frame, B and R, respectively. The
rotation quaternion from R to B, denoted by q, belongs to the null space of the following matrix:

𝐻 =

[
− [s×] d
−d𝑇 0

]
(1)

where

s =
1
2
( b + r) (2)

d =
1
2
( b − r) (3)

and [s×] denotes the cross-product matrix built from the 3 × 1 vector s. The spectral decomposition of
the matrix 𝐻 features a kernel, Ker𝐻, that is generated by the orthonormal basis {q1 , q2} where

q1 =

[
s
0

]
1
∥s∥ (4)

q2 =

[
−s × d
∥s∥2

]
1
∥s∥ (5)

Define ∥∥ as the norm of a vector. In addition, the orthogonal complement plane to Ker𝐻, ( Ker𝐻)⊥,
is generated by the orthonormal basis {q3 , q4} where

q3 =

[
d
0

]
1
∥d∥ (6)

q4 =

[
s × d
∥d∥2

]
1
∥d∥ (7)

Both q1 and q2 are feasible candidates to represent the rotation from R to B since they both belong
to the null space of 𝐻. The quaternion q1 is characterized by a rotation angle of 180 degrees while q2

features a minimum angle. One may seek the true quaternion as a linear combination of q1 and q2 . In
this work, however, we follow an orthogonal route.

3 Closed-form Quaternion Estimation using Two Vector Observa-
tions
Given two ideal non-collinear vector observations associated with the same attitude, i.e., two pairs

of noise-free unit-norm column-vectors, ( b1 , r1) and ( b2 , r2), such that the angle between r1 and r2

equals the angle between b1 and b2 , then the true quaternion q is expressed as follows:

q =

[
d1 × d2

s𝑇1 d2

]
1√︃

∥d1 × d2 ∥2 + |s𝑇1 d2 |2
(8)
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where s1 , s2 , d1 , d2 are defined from (2),(3). The proof follows. Let q
𝑖 𝑗

denote the 𝑗 𝑡ℎ basis element,
𝑗 = 1, 2, 3, 4, constructed from the 𝑖𝑡ℎ vector measurement, 𝑖 = 1, 2. As noted in Section 2, the
quaternion q belongs to the orthogonal complements of the two planes generated by the pairs (q13 , q14)
and (q23 , q24), respectively. The sought quaternion can thus be found along the intersection of these
planes. Let x denote a feasible unnormalized quaternion with vector part a and scalar part 𝛼, then the
orthogonality relationships yield

d𝑇
1 a = 0 (9)

d𝑇
2 a = 0 (10)

(s1 × d1)𝑇a + ∥d1 ∥2𝛼 = 0 (11)
(s2 × d2)𝑇a + ∥d2 ∥2𝛼 = 0 (12)

Eqs. (9)-(12) are linearly dependent otherwise q would be null. For simplicity, we will use Eqs. (9)-
(11), only. Eqs. (9)-(10) clearly show that a feasible choice for a is:

a = d1 × d2 (13)

so that, using Eq. (13) in Eq. (11), 𝛼 is determined as follows:

(s1 × d1)𝑇 (d1 × d2) + ∥d1 ∥2𝛼 = 0
s𝑇1

[
d1×

] [
d1×

]
d2 + ∥d1 ∥2𝛼 = 0

(s𝑇1 d1)d𝑇
1 d2 − ∥d1 ∥2s𝑇1 d2 + ∥d1 ∥2𝛼 = 0

∥d1 ∥2(𝛼 − s𝑇1 d2) = 0
𝛼 = s𝑇1 d2

which, upon normalization of the quaternion, yields the sought result. Finally, notice that due to the
easily verifiable identity:

s𝑇1 d2 = −s𝑇2 d1

an identical expression for q is readily obtained by using Eq. (12) instead of Eq.(11).

4 Singularity Analysis via Sequential Rotations
Singularity happens in the estimator (8) when there is division by zero. In practice this seldom

occurs because the noise in the data often prevents perfect cancellations of the vector differences or their
parallelism. Hence, the estimator’s equations remain valid with noisy data. Yet, when the noises are very
low, these equations may be badly conditioned. This difficulty can be circumvented by the known method
of sequential rotations [4, 5], [9, p. 192]. Thanks to the geometry insights we can find a priori feasible
sequences for each singular case. Compared with a trial and error procedure, this saves computations as
noted in [12]. The general approach is explained as follows and the particular sequences are proposed
next. Assuming that the true attitude from R to B yields one of the singular cases, then a new reference
frame C is sought such that the rotation from C to B yields well-behaved estimation equations. Once
the quaternion from C to B is estimated, the quaternion from R to B may be retrieved by a simple
composition with the quaternion from R to C, see Fig. 1.
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Fig. 1 Method of sequential rotations.

The steps are as follows: First of all, collect the VMs ( b1 , r1) and ( b2 , r2). Second, find a frame
C, equivalently a quaternion qR

C , such that the vector differences d𝐶
1 , d

𝐶
2 avoid any kind of singularity.n

Thrid, Apply the estimator equations

q̂C
B =

[
dC

1 × dC
2

sC1 · dC
2

]
1√︃

∥dC
1 × dC

2 ∥2 + |sC1 · dC
2 |2

(14)

where

sC
𝑖
=

1
2
( b

𝑖
+ rC

𝑖
), 𝑖 = 1, 2 (15)

dC
𝑖
=

1
2
( b

𝑖
− rC

𝑖
), 𝑖 = 1, 2 (16)

rC
𝑖
= 𝐷R

C r
𝑖
, 𝑖 = 1, 2 (17)

where 𝐷R
C denotes the DCM from R to C, and rC

𝑖
denote the projections of the vector measurements on

frame C.

Finally, calculate the sought quaternion:

q̂R
B = q̂R

C ∗ q̂C
B (18)

Typically, rotations of 𝜋 radians about one of the standard axes are used for the transformation from
R to C such that qR

B is rewritten as follows:

q̂R
B𝑅 ( x, 𝜋 )

= [𝑞4,−𝑞3, 𝑞2,−𝑞1]𝑇 (19)

q̂R
B𝑅 (y, 𝜋 )

= [𝑞3, 𝑞4,−𝑞1,−𝑞2]𝑇 (20)

q̂R
B𝑅 (z, 𝜋 )

= [−𝑞2, 𝑞1, 𝑞4,−𝑞3]𝑇 (21)

where 𝑅( x, 𝜋) means rotate 𝜋 along with the x axis and 𝑞4 and 𝑞1:3 are scalar and vector part of the
quaternion q̂C

B .

This results in simple permutations of the components of q̂C
B in Eq. (14) and of the components

of r
𝑖

in Eq. (17), which saves computations. The development of simple validation criteria for each
permutation is presented in A. Tab. 1 summarizes these validation conditions.
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Table 1 Validation criteria for simple rotations

Singularity case Validation criteria

𝑅( x, 𝜋) invalid IF b1 ∥ x-axis OR b2 ∥ x-axis OR [0 𝑟1𝑦 𝑟1𝑧] ∥ [0 𝑟2𝑦 𝑟2𝑧]
d1 = d2 = 0 𝑅(y, 𝜋) invalid IF b1 ∥ y-axis OR b2 ∥ y-axis OR [𝑟1𝑥 0 𝑟1𝑧] ∥ [𝑟2𝑥 0 𝑟2𝑧]

𝑅(z, 𝜋) invalid IF b1 ∥ z-axis OR b2 ∥ z-axis OR [𝑟1𝑥 𝑟1𝑦 0] ∥ [𝑟2𝑥 𝑟2𝑦 0]
𝑅( x, 𝜋) invalid IF b1 ∥ x-axis AND (𝑏2𝑦 + 𝑟2𝑦)𝑟1𝑧 = 𝑘 (𝑏2𝑧 + 𝑟2𝑧)𝑟1𝑦

d1 = 0 and d2 ≠ 0 𝑅(y, 𝜋) invalid IF b1 ∥ y-axis AND (𝑏2𝑥 + 𝑟2𝑥)𝑟1𝑧 = 𝑘 (𝑏2𝑧 + 𝑟2𝑧)𝑟1𝑥

𝑅(z, 𝜋) invalid IF b1 ∥ z-axis AND (𝑏2𝑦 + 𝑟2𝑦)𝑟1𝑥 = 𝑘 (𝑏2𝑥 + 𝑟2𝑥)𝑟1𝑦

𝑅( x, 𝜋) invalid IF b2 ∥ x-axis AND (𝑏1𝑦 + 𝑟1𝑦)𝑟2𝑧 = 𝑘 (𝑏1𝑧 + 𝑟1𝑧)𝑟2𝑦

d1 ≠ 0 and d2 = 0 𝑅(y, 𝜋) invalid IF b2 ∥ y-axis AND (𝑏1𝑥 + 𝑟1𝑥)𝑟2𝑧 = 𝑘 (𝑏1𝑧 + 𝑟1𝑧)𝑟2𝑥

𝑅(z, 𝜋) invalid IF b2 ∥ z-axis AND (𝑏1𝑦 + 𝑟1𝑦)𝑟2𝑥 = 𝑘 (𝑏1𝑥 + 𝑟1𝑥)𝑟2𝑦

𝑅( x, 𝜋) invalid IF d1 + [0 𝑟1𝑦 𝑟1𝑧] ∥ d2 + [0 𝑟2𝑦 𝑟2𝑧]
d1 × d2 = 0 and d1 ≠ 0, d2 ≠ 0 𝑅(y, 𝜋) invalid IF d1 + [𝑟1𝑥 0 𝑟1𝑧] ∥ d2 + [𝑟2𝑥 0 𝑟2𝑧]

𝑅(z, 𝜋) invalid IF d1 + [𝑟1𝑥 𝑟1𝑦 0] ∥ d2 + [𝑟2𝑥 𝑟2𝑦 0]

5 Error Analysis
This section is concerned with the analysis of errors in the proposed estimator. We first introduce

basic notations and definitions before performing a deterministic analysis. Second-order approximations
of the estimation errors are easily developed despite the nonlinearity of the estimator. Also, the results
are obtained related to the normalization effect and its impact on the additive and multiplicative quater-
nion errors. Then we proceed with a random error analysis focusing on the classical assumptions of
additive unbiased white noises in the body and reference vectors and uncorrelation among the two vector
measurements. The estimator’s simplicity and the use of unnormalized variables help in streamlining the
nonlinear analysis and developing closed-form expressions for the estimation error biases and covariance
matrices of the quaternion additive and multiplicative errors and of the classical three-dimensional Euler
vector error. The novelty of the current developments resides in better approximations of the biases and
covariances, as illustrated in the numerical tests presented in the next section.

5.1 Definitions and notations
Let 𝚫b𝑖,𝚫r𝑖 denote additive errors in the body frame and reference frame vectors, respectively:

b
𝑖
= b𝑡

𝑖
+ 𝚫b𝑖 (22)

r
𝑖
= r𝑡

𝑖
+ 𝚫r𝑖 (23)

where the superscript 𝑡 denotes the true value of the underlying variable. Let q̄ and q̄𝑡 denote the
unnormalized estimate and unnormalized true quaternion, respectively:

q̄ =

[
d1 × d2

s1 · d2

]
(24)

q̄𝑡 =

[
d𝑡

1 × d𝑡
2

s𝑡1 · d𝑡
2

]
(25)
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The additive estimation error in the unnormalized quaternion estimate, or simply the “unnormalized
additive error”, is defined as follows:

𝚫q̄ = q̄𝑡 − q̄ (26)

It will be handy, in the following developments, to use a scaled expression of the unnormalized
additive error. Let q̌ denote the following scaled estimate:

q̌ =
q̄

| q̄𝑡 | (27)

where | q̄𝑡 | denotes the Euclidean norm of q̄𝑡 , then the “scaled unnormalized error” is defined as follows:

𝚫q̌ =
𝚫q̄
| q̄𝑡 | (28)

Furthermore, we define the “unnormalized multiplicative error” as follows:

𝜹q̄ = ( q̄𝑡)−1 ∗ q̄ (29)

where ( q̄𝑡)−1 denotes the quaternion inverse of q̄𝑡 , and ∗ denotes the quaternion multiplication. Finally,
let q̂ and q denote the normalized estimated quaternion and the normalized true quaternion, which are
defined as follows:

q̂ =
q̄
| q̄| (30)

q =
q̄𝑡

| q̄𝑡 | (31)

Then the additive and multiplicative errors in the normalized quaternion estimate, or simply, the
“normalized additive and multiplicative errors”, are defined as follows:

𝚫q = q − q̂ (32)
𝜹q = (q)−1 ∗ q̂ (33)

5.2 Deterministic analysis

5.2.1 Exact formulas
In the following, an exact formula for the error 𝚫q̄ is developed as a function of the measurement

errors 𝚫b and 𝚫r. Using Eq. (26) and the definitions of the vectors s and d yields the following expression
for 𝚫q̄:

𝚫q̄ =

[
[d𝑡

2×]𝚫d1 + [−d𝑡
1×]𝚫d2 − 𝚫d1 × 𝚫d2

−d𝑡
2 · 𝚫s1 − s𝑡1 · 𝚫d2 − 𝚫s1 · 𝚫d2

]
(34)

where the errors 𝚫d𝑖 and 𝚫s𝑖 are defined in Eqs. (2)- (3).
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Next, we obtain exact expressions for the various errors as a function of 𝚫q̄. Let a denote the ratio
between the norms of q̄ and q̄𝑡 , i.e.

a =
| q̄𝑡 |
| q̄| (35)

then the following identities are satisfied:

𝜹q̄ = 1q + 𝑀𝚫q̌ (36)

a =

(
1 − 2q𝑇𝚫q̌ + |𝚫q̌|2

)−1/2
(37)

𝚫q = a𝚫q̌ + (1 − a) q (38)
𝜹q = 1q + 𝑀𝚫q (39)

where 𝚫q̌ is defined in Eq. (28), 1q and 𝑀 are defined as follows:

𝚫q̌ =
𝚫q̄
| q̄𝑡 | (40)

1q =

[
0
1

]
(41)

𝑀 =

[
[ e×] − 𝑞 𝐼3 e

− e𝑇 −𝑞

]
(42)

and q denotes the normalized true quaternion. Eqs. (34)-(42) are a set of exact formulas relating all
errors to the underlying measurement errors. They are a useful preliminary to the development of
approximations. The development of these formulas is provided in B.

5.2.2 Second-order approximation formulas
We aim here at developing approximate expressions for the errors that are accurate to second-order

in 𝚫q̄, or equivalently in 𝚫q̌. Notice that the expression for the multiplicative error 𝜹q̄, Eq.(36), is linear
in 𝚫q̌. Hence we first study a then 𝚫q. The results are summarized in the following identities:

a = 1 + q𝑇𝚫q̌ + 1
2
𝚫q̌𝑇

[
3qq𝑇 − 𝐼4

]
𝚫q̌ (43)

𝚫q =
[
𝐼4 − qq𝑇

]
𝚫q̌ +

[
𝚫q̌𝚫q̌𝑇 + 1

2
𝚫q̌𝑇

(
𝐼4 − 3qq𝑇

)
𝚫q̌ 𝐼4

]
q (44)

The accuracy of the above formulas depends on the amplitude of the higher-order terms. Developing
the approximate expression for the multiplicative error 𝜹q is straightforward, since 𝜹q is linear in 𝚫q, see
Eq.(39). The development of Eqs. (43)-(44) is provided in C. We notice in Eq. (44) that the first-order
approximation to the normalized additive error is the projection of 𝚫q̌ onto the orthogonal complement
to the true quaternion. This is a well-known effect of quaternion normalization that creates an error lying
close to the plane tangent to the unit sphere. The second-order factor however breaks this property by
adding two terms: the first one is along the vector 𝚫q̌ and the second along the true quaternion. Their
amplitudes depend on the relative geometry of the scaled vector 𝚫q̄ with q, see a planar illustration in
Fig. 2. To conclude, the current results provide handy formulas for studying the estimation errors as a
function of 𝚫q̄. The dependence upon the original errors in the body and reference vectors is readily
obtained thanks to the exact Eqs. (34).
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Fig. 2 Estimates and errors.

5.3 Random analysis
The deterministic error analysis easily lends itself to a random analysis under fairly general assump-

tions on the underlying vector measurement errors. In particular, we will provide simple expressions
for the biases of the various errors that are accurate to the second order in 𝚫b and 𝚫r. Subsequently,
expressions for the covariance matrices of the various errors will be provided that are accurate to the
fourth order in 𝚫b and 𝚫r[17].

5.3.1 Biases
Assume that the errors 𝚫b1 , 𝚫b2 , 𝚫r1 , and 𝚫r2 are unbiased and mutually uncorrelated random

vectors. The unbiasedness holds when the vector measurements are not normalized or when their
standard deviations 𝜎 are very small since their biases are of the order 𝜎2 [9, p. 204]. This is a common
assumption given that biases in sensors are typically evaluated by calibration and can be compensated.
Then the following identities hold:

𝐸{𝚫q̄} = 0 (45)
𝐸{𝚫q̌} = 0 (46)
𝐸{𝜹q̄} = 1q (47)

𝐸{a} = 1 − 1
2

tr(𝑄𝑃𝚫q̌) (48)

𝐸{𝚫q} =
[
𝑃𝚫q̌ +

1
2

tr(𝑄𝑃𝚫q̌) 𝐼4

]
q (49)

𝐸{𝜹q} = 1q + 𝑀

[
𝑃𝚫q̌ +

1
2

tr(𝑄𝑃𝚫q̌) 𝐼4

]
q (50)

where

𝑄 = 𝐼4 − 3qq𝑇 (51)

and 𝑃𝚫q̌ denotes the covariance matrix of 𝚫q̌, i.e. 𝑃𝚫q̌ = 𝐸{𝚫q̌𝚫q̌𝑇 }. The proofs of Eqs. (45)-(50) are
provided in D. These results shed light on the impact of quaternion normalization. As seen from Eqs. (45)-
(47), the unnormalized errors are unbiased. On the other hand, the normalized estimation errors, 𝚫q and
𝜹q, are biased, and their biases are functions of the covariance matrix of 𝑃𝚫q̌ . A closed-form expression for
the latter will be obtained in the next section. Furthermore, Eq. (49) shows that the bias includes a term
along the true quaternion. This fact is similar to previous findings on unit vector measurement [9, sec.
5.5.2], whose bias lies opposite the true vector direction. Yet it is here unclear whether the bias points
inward or outward to the unit sphere since the matrix 𝑄 is indefinite. Furthermore, the contribution of
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the term 𝑃𝚫q̌q to the bias is not necessarily along q although it is generally close to it. To conclude, the
proposed estimator is biased, and closed-form expressions for the biases of the additive and multiplicative
errors are developed. This paves the way for the development of the error covariance matrices.

5.3.2 The covariance matrix 𝑃𝚫q̄

Since the equations for the unnormalized quaternion estimate q̄ are fairly simple, the derivation of
the covariance matrix of 𝚫q̄ is straightforward. Assume that the errors 𝚫b1 , 𝚫b2 , 𝚫r1 , and 𝚫r2 have the
same covariance matrix:

cov{𝚫b𝑖} = 𝜎2 𝐼3 (52)
cov{𝚫r𝑖} = 𝜎2 𝐼3 (53)

then the covariance matrix 𝑃𝚫q̄ is expressed as follows:

𝑃𝚫q̄ =
𝜎2

2

[∑2
𝑗=1 |d𝑡

𝑗
|2 𝐼3 − d𝑡

𝑗
(d𝑡

𝑗
)𝑇 d𝑡

1 × s𝑡1
(d𝑡

1 × s𝑡1)
𝑇 |d𝑡

2 |
2 + |s𝑡1 |

2

]
(54)

where d𝑡
1 , d𝑡

2 , s𝑡1 are defined in Eqs. (2)-(3). The impact of the noise level enters through the parameter
𝜎2 and the influence of the relative geometry of the vector measurements is expressed in the matrix. The
derivation of Eq.(54) is provided in E along with the general case, where the 𝚫b and 𝚫r vectors are not
necessarily uncorrelated and their covariance matrices may differ.

5.3.3 The other covariance matrices
Let 𝑃𝚫q̄ , 𝑃𝜹q̄ , 𝑃

𝚫q , 𝑃
𝜹q denote the covariance matrices of 𝚫q̄, 𝜹q̄, 𝚫q, and 𝜹q, respectively. We present

results on these covariance matrices for a generic 𝑃𝚫q̄ , which are summarized next:

𝑃𝚫q̌ =
1

| q̄𝑡 |2
𝑃𝚫q̄ (55)

𝑃𝜹q̄ = 𝑀𝑃𝚫q̌𝑀
𝑇 (56)

𝑃
𝚫q = ( 𝐼4 − qq𝑇 )𝑃𝚫q̌ ( 𝐼4 − qq𝑇 )𝑇 + 𝑁qq𝑇𝑁𝑇 (57)
𝑃
𝜹q = 𝑀𝑃

𝚫q𝑀
𝑇 (58)

where

𝑁 = 𝑃𝚫q̌ +
1
2

tr(𝑄𝑃𝚫q̌) 𝐼4 (59)

The proofs are provided in F. We notice that the covariance matrix 𝑃
𝚫q includes two terms. The

first one is a similarity transformation of the matrix 𝑃𝚫q̌ where ( 𝐼4 − qq𝑇 ) is an orthogonal projection
matrix. That covariance is associated with the first-order (in 𝚫q̌) approximation of the estimation error.
Since it lies on the tangential plane to the unit sphere, its components are linearly dependent and the
associated covariance matrix is singular. The approximation to the second-order includes a term that lies
out of the tangential plane (see Eq.(44)) and prevents, in general, the covariance matrix of 𝚫q from being
singular. The latter is true for 𝜹q since 𝑃

𝜹q is obtained from 𝑃
𝚫q via a similarity transformation where 𝑀

is an orthogonal matrix. These comments shed some light on a misconception in the field of quaternion
estimation according to which the covariance matrix of the four-dimensional estimation error ought to be
singular. Furthermore, these conclusions are general since our argument relies on a generic 𝑃𝚫q̄ . Indeed
the above analysis focuses on the impact of the normalization. Finally, the expression for the Euler vector
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estimation error, 𝜹𝜽 , can be derived using well-known approximations related to the multiplicative error
𝜹q [9, p. 201]:

𝜹q =

[
sin( 𝛿\2 )𝜹u
cos( 𝛿\2 )

]
(60)

≃
[

1
2 𝜹𝜽

1

]
(61)

Therefore the Euler vector error, its bias, and its covariance matrix are approximated as follows:

𝜹𝜽 = 2 𝛿ê (62)
𝐸{𝜹𝜽} = 2 𝐸{𝛿ê} (63)
cov{𝜹𝜽} = 4 cov{𝛿ê} (64)

where 𝐸{𝛿ê} and cov{𝛿ê} are readily extracted from 𝐸{𝜹q} Eq.(50) and 𝑃
𝜹q Eq.(58), respectively.

6 Test Results
In this section, we first verify the consistency of the proposed approximation statistics and then

evaluate the estimator’s performances via extensive Monte Carlo simulations.

6.1 Statistical consistency
The statistics formulas are verified in the particular case where the attitude is provided by the

quaternion and the vector measurements in the reference frame are expressed as follows:

q =

[
0 0 −

√
2

2

√
2

2

]
r1 =

[
1 0 0

]
r2 =

[
0 1 0

]
The additive noises 𝚫b and 𝚫r are simulated as zero-mean white Gaussian random variables with

identical standard deviation 𝜎 = 0.01. A sample of 1,000,000 runs was created and the expected values
were approximated using standard sample averaging. Tab. 2 summarizes the results. The columns 1
to 3 consist of the relative deviations between the predicted covariance matrices and their Monte Carlo
values, expressed in percentage. Before or after the normalization, the relative deviations appear to be
of the order of 0.2%. Also, the eigenvalues of 𝑃

𝜹q and 𝑃𝑀𝐶
𝜹q

are provided in the column 4. Again there is
a very good agreement between the formulas and the actual values. Notice that the least eigenvalue is
different from zero, which illustrates the positive definiteness of the covariance matrices. One can also
notice that the least eigenvalue is very small compared to the other three, with ratios of about 10−4, that
is 𝜎2. This fact quantifies the bad conditioning of the covariance matrices for very small 𝜎. Column
5 shows the deviations between the predicted biases and the Monte Carlo values, for both additive and
multiplicative errors. They are both of order 10−5 which is one order of magnitude less than 𝜎2. Notice
that 𝑃𝚫q̄ is used to calculate the biases and that the latter are needed in the calculations of the covariance
matrices. Thus these results verify the statistical consistency of the proposed formulas for both the biases
and the covariance matrices.
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Table 2 Statistical consistency

|𝑃𝑀𝐶

𝚫q̄ −𝑃𝚫q̄ |
|𝑃𝑀𝐶
𝚫q̄ |

|𝑃𝑀𝐶

𝚫q
−𝑃

𝚫q |
|𝑃𝑀𝐶

𝚫q
|

|𝑃𝑀𝐶

𝜹q
−𝑃

𝜹q |
|𝑃𝑀𝐶

𝜹q
| eigenvalue of 𝑃𝑀𝐶

𝚫q
, 𝑃

𝚫q (×10−4) [Δ𝑞𝑀𝐶 − 𝐸Δ𝑞, 𝛿𝑞
𝑀𝐶 − 𝐸𝛿𝑞] (×10−4)

0.16% 0.19% 0.19%


0.5062 0.5
0.4923 0.5
0.4787 0.5

0.000037 0.000037



−0.2357 −0.2612

0.1336 −0.0721
−0.3446 −0.4759
−0.3285 0.0113


We run similar Monte Carlo tests for various sample sizes, 1000, 10000, etc, in order to study the

convergence rate of the different deviations. Tab. 3 summarizes the results. The second column to the
left clearly depicts the asymptotic unbiasedness of the error 𝚫q̄ (Euclidean norm) as 𝑁 grows to infinity.
The third column shows the decrease of the relative deviations in the covariance as 𝑁 grows. The rate
seems to be 1/

√
𝑁 . The other columns depict the convergence of the deviations in the expectations and

the covariances of the normalized errors to zero. In the latter too, the rate seems to be 1/
√
𝑁 .

Table 3 Covariance and biases results

N | 𝐸𝑀𝐶
Δ𝑞

|
|𝑃𝑀𝐶

𝚫q̄ −𝑃𝚫q̄ |
|𝑃𝑀𝐶
𝚫q̄ | | 𝐸𝑀𝐶

Δ𝑞
− 𝐸Δ𝑞 | ,| 𝐸𝑀𝐶

𝛿𝑞
− 𝐸𝛿𝑞 |

|𝑃𝑀𝐶

𝚫q
−𝑃

𝚫q |
|𝑃𝑀𝐶

𝚫q
| ,

|𝑃𝑀𝐶

𝜹q
−𝑃

𝜹q |
|𝑃𝑀𝐶

𝜹q
|

N=1,000 3 × 10−4 6% 2 × 10−4 9%
N=10,000 1 × 10−4 2.3% 2 × 10−4 2.5%
N=100,000 3 × 10−5 0.56% 3 × 10−5 0.57%
N=1,000,000 4 × 10−6 0.16% 4 × 10−6 0.19%
N=10,000,000 4 × 10−6 0.03% 5 × 10−6 0.07%

6.2 Performance evaluation: accuracy and computation burden
To demonstrate the accuracy of our estimator, we simulate 100,000 cases using random attitude

quaternions. The four quaternion components were sampled from a Gaussian distribution with zero
mean and identity covariance, and then the sampled quaternion was normalized. For each attitude we
generate two random reference vectors, r1 and r2 , independently and uniformly distributed on the unit
sphere. We use the attitude quaternion to map the reference vectors to the body frame. The vectors
in reference and body frame are both corrupted by Gaussian random noise with a specified standard
deviation of 1′ i.e. about 0.016 degree. The estimator was applied at each run and produced an estimate
q̂. The accuracy measure was chosen to be the angular error 𝛿\ that is calculated as follows:

𝛿\ = 2 arccos (q̂𝑇q)

The performance of the estimator is depicted in Fig. 3 via the cumulative distribution function
(CDF) of the estimation error. For the sake of comparison, we also plot the CDF of two state-of-the-art
algorithms introduced in [15], named “Suboptimal Estimator” (here, Method 3) and “Optimal Estimator”
(here Method 2). Both algorithms are very simple and their equations are re-written here for the sake of
convenience (see Table 4). It appears that Method 2 outperforms Methods 1 and 3. On the other hand, our
estimator outperforms Method 3 for errors greater than 0.16 degrees, which approximately corresponds
to a probability upper bound of 0.93.
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Fig. 3 Cumulative distribution function of 𝛿\

One way of measuring the computation burden is to count the number of floating point operations,
or FLOP, in the estimators’ main cycles [18]. Table 4 shows the number of FLOP for each of the three
estimators. As shown in Table 4, Method 1 only requires 59 FLOP, versus 140 and 208 for the Method 3
and Method 2, respectively.

Table 4 Computation burden test

Case Estimator FLOPs

method 1

s1 =
1
2
(b1 + r1)

d1 =
1
2
(b1 − r1); d2 =

1
2
(b2 − r2)

q =

[
d1 × d2

s𝑇1 d2

]
1√︃

∥d1 × d2∥2 + |s𝑇1 d2 |2

59

method 3

` = (1 + b1 · r1) [(b1 × b2) · (r1 × r2)] − [b1 · (r1 × r2)] [r1 · (b1 × b2)]
𝑣 = (b1 + r1) · [(b1 × b2) × (r1 × r2)]

𝜌 =

√︃
`2 + 𝑣2

𝑞TRIAD =
1

2
√︁
𝜌(𝜌 + `) (1 + b1 · r1)

[
(𝜌 + `) (b1 × r1) + 𝑣 (b1 + r𝑖)

(𝜌 + `) (1 + b1 · r1)

]
for ` ≥ 0

𝑞TRIAD =
1

2
√︁
𝜌(𝜌 − `) (1 + b1 · r1)

[
𝑣 (bi × r1) + (𝜌 − `) (b1 + r1)

𝑣 (1 + b1 · r1)

]
for ` ≤ 0

140

method 2

r3 = (r1 × r2) /|r1 × r2 | ; b3 = (b1 × b2) /|b1 × b2 |
𝛼 = (1 + b3 · r3) (𝑎1b1 · r1 + 𝑎2b2 · r2) + (b3 × r3) · (𝑎1b1 × r1 + 𝑎2b2 × r2)
𝛽 = (b3 + r3) · (𝑎1b1 × r1 + 𝑎2b2 × r2)

𝛾 =

√︃
𝛼2 + 𝛽2

qopt =
1

2
√︁
𝛾(𝛾 + 𝛼) (1 + b3 · r3)

[
(𝛾 + 𝛼) (b3 × r3) + 𝛽 (b3 + r3)

(𝛾 + 𝛼) (1 + b3 · r3)

]
for 𝛼 ≥ 0

qopt =
1

2
√︁
𝛾(𝛾 − 𝛼) (1 + b3 · r3)

[
𝛽 (b3 × r3) + (𝛾 − 𝛼) (b3 + r3)

𝛽 (1 + b3 · r3)

]
for 𝛼 ≤ 0

208

For completeness, we checked the execution time of the three subroutines. The experiment was
conducted with MATLAB 2022b running on a PC WIN64, featuring an Intel 12th Gen Core i5-12500H
processor operating at 2.50 GHz. Table 5 summarizes the results.
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Table 5 Computation running time test

Case Average run-time [ �̀�𝑒𝑐] Worst run-time [𝑚𝑠𝑒𝑐] Ratio
method 1 0.8 0.1 -

method 3 [15] 1.5 0.2 1.8
method 2 [15] 2.1 0.2 2.6

q-method [9, sec. 5.3.1] 9.9 0.3 12.5
ESOQ [5], [9, sec. 5.3.5] 11.3 0.4 14.2

QUEST [4], [9, sec. 5.3.2] 12.9 0.7 16.2

Notice that the subroutines used here to solve for the quaternion via the q-method or ESOQ are
built-in MATLAB codes. To conclude, the proposed estimator is typically as accurate as the suboptimal
estimator of [15] and twice as fast.

7 Conclusion
The proposed algorithm is exceedingly simple. This dramatically simplifies the computations and

it enables a systematic error analysis. In particular one can express the biases and the covariances of
the additive errors, which is important for performance evaluations. The statistics were verified for
consistency and the performances were compared with state-of-the-art algorithms. The accuracy of the
proposed estimator compares well with an optimal similar quaternion estimator and is sometimes better
than that of a related suboptimal version. An additional outcome of this study consists of the general
analysis of the additive quaternion error: its covariance is in principle not singular despite normalization.
The proposed approximations shed light on the conditions under which the matrix may become badly
conditioned.
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Appendix

A Validation criteria for simple sequences of rotations
The validation criteria are developed for each singularity case.
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Case A: d1 = d2 = 0
Assume a rotation of 𝜋 radians about the x-axis:

b1 = r1 = [𝑟1𝑥 , 𝑟1𝑦, 𝑟1𝑧]𝑇 (A1)
b2 = r2 = [𝑟2𝑥 , 𝑟2𝑦, 𝑟2𝑧]𝑇 (A2)
rC1 = [𝑟1𝑥 ,−𝑟1𝑦,−𝑟1𝑧]𝑇 (A3)
rC2 = [𝑟2𝑥 ,−𝑟2𝑦,−𝑟2𝑧]𝑇 (A4)
dC

1 = [0, 𝑟1𝑦, 𝑟1𝑧]𝑇 (A5)
dC

2 = [0, 𝑟2𝑦, 𝑟2𝑧]𝑇 (A6)

If b1 ∥ x-axis or b2 ∥ x-axis or [0, 𝑟1𝑦, 𝑟1𝑧]𝑇 ∥ [0, 𝑟2𝑦, 𝑟2𝑧]𝑇 , then the vector differences d𝐶
1 , d

𝐶
2 are

in one of the singular cases. Similar conclusions are readily obtained for rotations around the other two
axes by 𝜋 radians.

Case B: d1 = 0 and d2 ≠ 0
Assume a rotation of 𝜋 radians about the x-axis:

b1 = r1 = [𝑟1𝑥 , 𝑟1𝑦, 𝑟1𝑧]𝑇 (A7)
r2 = [𝑟2𝑥 , 𝑟2𝑦, 𝑟2𝑧]𝑇 (A8)
b2 = [𝑏2𝑥 , 𝑏2𝑦, 𝑏2𝑧]𝑇 (A9)
rC1 = [𝑟1𝑥 ,−𝑟1𝑦,−𝑟1𝑧]𝑇 (A10)
rC2 = [𝑟2𝑥 ,−𝑟2𝑦,−𝑟2𝑧]𝑇 (A11)
dC

1 = [0, 𝑟1𝑦, 𝑟1𝑧]𝑇 (A12)

dC
2 =

1
2
[𝑏2𝑥 − 𝑟2𝑥 , 𝑏2𝑦 + 𝑟2𝑦, 𝑏2𝑧 + 𝑟2𝑧]𝑇 (A13)

If b1 ∥ x-axis and (𝑏2𝑦 + 𝑟2𝑦)𝑟1𝑧 = 𝑘 (𝑏2𝑧 + 𝑟2𝑧)𝑟1𝑦, where 𝑘 is an arbitrary constant, then the vector
differences d𝐶

1 and d𝐶
2 are in one of the singular cases. Similar conclusions are readily obtained for

rotations around the other two axes by 𝜋 radians.

Case C: d1 ≠ 0 and d2 = 0
Assume a rotation of 𝜋 radians about the x-axis:

r1 = [𝑟1𝑥 , 𝑟1𝑦, 𝑟1𝑧]𝑇 (A14)
b1 = [𝑏1𝑥 , 𝑏1𝑦, 𝑏1𝑧]𝑇 (A15)
b2 = r2 = [𝑟2𝑥 , 𝑟2𝑦, 𝑟2𝑧]𝑇 (A16)
rC1 = [𝑟1𝑥 ,−𝑟1𝑦,−𝑟1𝑧]𝑇 (A17)
rC2 = [𝑟2𝑥 ,−𝑟2𝑦,−𝑟2𝑧]𝑇 (A18)

dC
1 =

1
2
[𝑏1𝑥 − 𝑟1𝑥 , 𝑏1𝑦 + 𝑟1𝑦, 𝑏1𝑧 + 𝑟1𝑧]𝑇 (A19)

dC
2 = [0, 𝑟2𝑦, 𝑟2𝑧]𝑇 (A20)
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If b2 ∥ x-axis and (𝑏1𝑦 + 𝑟1𝑦)𝑟2𝑧 = 𝑘 (𝑏1𝑧 + 𝑟1𝑧)𝑟2𝑦, where 𝑘 is an arbitrary constant, then the vector
differences d𝐶

1 , d
𝐶
2 are in one of the singular cases. Similar conclusions are readily obtained for rotations

around the other two axes by 𝜋 radians.

Case D: d1 × d2 = 0 and d1 ≠ 0, d2 ≠ 0
Assume a rotation of 𝜋 radians about the x-axis:

r1 = [𝑟1𝑥 , 𝑟1𝑦, 𝑟1𝑧]𝑇 (A21)
r2 = [𝑟2𝑥 , 𝑟2𝑦, 𝑟2𝑧]𝑇 (A22)
b1 = [𝑏1𝑥 , 𝑏1𝑦, 𝑏1𝑧]𝑇 (A23)
b2 = [𝑏2𝑥 , 𝑏2𝑦, 𝑏2𝑧]𝑇 (A24)
rC1 = [𝑟1𝑥 ,−𝑟1𝑦,−𝑟1𝑧]𝑇 (A25)
rC2 = [𝑟2𝑥 ,−𝑟2𝑦,−𝑟2𝑧]𝑇 (A26)

dC
1 =

1
2
[𝑏1𝑥 − 𝑟1𝑥 , 𝑏1𝑦 + 𝑟1𝑦, 𝑏1𝑧 + 𝑟1𝑧]𝑇 (A27)

dC
2 =

1
2
[𝑏2𝑥 − 𝑟2𝑥 , 𝑏2𝑦 + 𝑟2𝑦, 𝑏2𝑧 + 𝑟2𝑧]𝑇 (A28)

If d1 + [0, 𝑟1𝑦, 𝑟1𝑧]𝑇 ∥ d2 + [0, 𝑟2𝑦, 𝑟2𝑧]𝑇 , then the vector differences d𝐶
1 , d

𝐶
2 are in one of the singular

cases. Similar conclusions are readily obtained for rotations around the other two axes by 𝜋 radians.

B Proof of Eqs. (34)-(42)
The proof of Eq.(34) is straightforward and relies on perturbation of the expression for the unnor-

malized estimate q̄𝑡 . The unnormalized multiplicative error 𝜹q̄ is defined in Eq.(29) using the quaternion
inverse, as follows:

𝜹q̄ = ( q̄𝑡)−1 ∗ q̄
= ( q̄𝑡)−1 ∗ ( q̄𝑡 − 𝚫q̄)
= ( q̄𝑡)−1 ∗ q̄𝑡 − ( q̄𝑡)−1 ∗ 𝚫q̄
= 1q − ( q̄𝑡)−1 ∗ 𝚫q̄
= 1q − | q̄𝑡 | ( q̄𝑡)−1 ∗ 𝚫q̌

and Eq. (36) follows using Eq.(28), Eq.(31). A similar development is readily applied in order to obtain
Eq.(39). Using the definition of 𝜹q in Eq.(33) yields

𝜹q = (q)−1 ∗ q̂
= (q)−1 ∗ (q − 𝚫q)
= (q)−1 ∗ q − (q)−1 ∗ 𝚫q
= 1q − (q)−1 ∗ 𝚫q
= 1q − q−1 ∗ 𝚫q
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and Eq.(39) follows. Next Eq.(37) is developed by considering the squared norm of q̄ first.

| q̄|2 = | q̄𝑡 − 𝚫q̄|2

= | q̄𝑡 |2 − 2 q̄𝑡 · 𝚫q̄ + |𝚫q̄|2

Dividing by | q̄𝑡 |2 yields

| q̄|2
| q̄𝑡 |2

= 1 − 2
q̄𝑡

| q̄𝑡 | ·
𝚫q̄
| q̄𝑡 | +

(
|𝚫q̄|
| q̄𝑡 |

)2

= 1 − 2q · 𝚫q̌ + |𝚫q̌|2

and Eq.(37) follows by the operations of square root and inversion. Finally, Eq.(38) is developed as
follows.

𝚫q = q − q̂

=
q̄𝑡

| q̄𝑡 | −
q̄
| q̄|

=
q̄𝑡

| q̄𝑡 | −
q̄𝑡 − 𝚫q̄
| q̄|

=
𝚫q̄
| q̄| +

(
1
| q̄𝑡 | −

1
| q̄|

)
q̄𝑡

=
| q̄𝑡 |
| q̄|

𝚫q̄
| q̄𝑡 | +

(
1 − | q̄𝑡 |

| q̄|

)
q̄𝑡

| q̄𝑡 |

and Eq.(38) follows using the definitions of q, 𝚫q̌, and a.

C Proof of Eqs. (43)-(44)
From Eq. (37), the ratio a is expressed as follows:

a = (1 + 𝜖)−
1
2

where

𝜖 = −2q𝑇𝚫q̌ + |𝚫q̌|2

A power series expansion to the second order in 𝜖 yields

a = 1 − 1
2
𝜖 + 3

8
𝜖2

= 1 + q𝑇𝚫q̌ − 1
2
𝚫q̌𝑇𝚫q̌ + 3

2
𝚫q̌𝑇qq𝑇𝚫q̌

and Eq.(43) follows. Inserting Eq. (43) into Eq.(38), keeping the second order terms in𝚫q̌ and rearranging
yields Eq. (44).
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D Proof of Eqs. (45)-(50)
We first notice that 𝚫s1 , 𝚫d1 and 𝚫d2 are linear transformations of 𝚫b1 , 𝚫b2 , 𝚫r1 , and 𝚫r2 , and are

thus unbiased, and mutually uncorrelated. Then applying the expectation operator to Eq. (34), using the
linearity property, the unbiasedness of 𝚫s and 𝚫d and their uncorrelation, yields the sought result, i.e., the
unbiasedness of 𝚫q̄ Eq.(45). Since 𝚫q̌ is obtained through the division of 𝚫q̄ by | q̄𝑡 |, it is unbiased as
well and Eq.(46) follows. Eq. (47) follows from Eq.(46) and Eq.(36). Eq. (48) is obtained as follows:

𝐸{a} = 𝐸{1 + q𝑇𝚫q̌ + 1
2
𝚫q̌𝑇

(
3qq𝑇 − 𝐼4

)
𝚫q̌}

= 1 + q𝑇𝐸{𝚫q̌} + 1
2
𝐸{𝚫q̌𝑇

(
3qq𝑇 − 𝐼4

)
𝚫q̌}

= 1 + 1
2

tr
[(

3qq𝑇 − 𝐼4

)
𝐸{𝚫q̌𝚫q̌𝑇 }

]
Eq. (49) is obtained in a similar manner:

𝐸{𝚫q} = 𝐸{
[
𝐼4 − qq𝑇

]
𝚫q̌ +

[
𝚫q̌𝚫q̌𝑇 + 1

2
𝚫q̌𝑇

(
𝐼4 − 3qq𝑇

)
𝚫q̌ 𝐼4

]
q}

=
[
𝐼4 − qq𝑇

]
𝐸{𝚫q̌} +

[
𝐸{𝚫q̌𝚫q̌𝑇 } + 1

2
𝐸{𝚫q̌𝑇

(
𝐼4 − 3qq𝑇

)
𝚫q̌} 𝐼4

]
q

=

{
𝑃𝚫q̌ +

1
2

tr
[(

𝐼4 − 3qq𝑇
)
𝑃𝚫q̌

]
𝐼4

}
q

Finally using Eq.(49) in Eq.(39) yields Eq.(50).

E Derivation of the covariance matrix 𝑃𝚫q̄

E1 Covariance matrices of 𝚫d and 𝚫s
Let 𝑃𝚫d and 𝑃𝚫s denote the covariance matrices of 𝚫d and 𝚫s, respectively. Recalling their expressions:

𝚫s =
1
2
(𝚫b + 𝚫r) (E1)

𝚫d =
1
2
(𝚫b − 𝚫r) (E2)

yields

𝑃𝚫d =
1
4

[
𝐼3 − 𝐼3

] [ 𝑃𝚫b 𝑃𝚫b𝚫r

𝑃𝑇
𝚫b𝚫r 𝑃𝚫s

] [
𝐼3

− 𝐼3

]
(E3)

𝑃𝚫s =
1
4

[
𝐼3 𝐼3

] [ 𝑃𝚫b 𝑃𝚫b𝚫r

𝑃𝑇
𝚫b𝚫r 𝑃𝚫s

] [
𝐼3

𝐼3

]
(E4)

where 𝑃𝚫b , 𝑃𝚫r , and 𝑃𝚫b𝚫r denote the covariance matrices of 𝚫b, 𝚫r, and the cross-covariance matrix,
respectively. Cross-covariances 𝑃𝚫d1𝚫s1

, 𝑃𝚫d2𝚫s1
𝑃𝚫d1𝚫d2

are easily derived by similar arguments.
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E2 Covariance matrix 𝑃𝚫q̄: the general case
Recalling the expression of 𝚫q̄ from Eq.(34) and retaining the linear terms only yields:

𝚫q̄ =

[
03×3 𝐸 𝐹

𝐺 01×3 𝐻

] 
𝚫s1

𝚫d1

𝚫d2

 (E5)

where

𝐸 = [d𝑡
2×] (E6)

𝐹 = [−d𝑡
1×] (E7)

𝐺 = (−d𝑡
2)
𝑇 (E8)

𝐻 = (−s𝑡1)
𝑇 (E9)

Hence the covariance matrix 𝑃𝚫q̄ is expressed as follows

𝑃𝚫q̄ =

[
03×3 𝐸 𝐹

𝐺 01×3 𝐻

] 
𝑃𝚫s1

𝑃𝚫s1𝚫d1
𝑃𝚫s1𝚫d2

𝑃𝑇
𝚫s1𝚫d1

𝑃𝚫d1
𝑃𝚫d1𝚫d2

𝑃𝑇
𝚫s1𝚫d2

𝑃𝑇
𝚫d1𝚫d2

𝑃𝚫d2



03×3 𝐺𝑇

𝐸𝑇 03×1

𝐹𝑇 𝐻𝑇

 (E10)

E3 Covariance matrix 𝑃𝚫q̄: the particular case
Under the assumptions of independence and identical covariances for the vector measurement errors,

𝑃𝚫q̄ boils down to the following matrix:

𝑃𝚫q̄ =
𝜎2

2

[
03×3 𝐸 𝐹

𝐺 01×3 𝐻

] 
𝐼3 𝐼3 03×3

𝐼3 𝐼3 03×3

03×3 03×3 𝐼3



03×3 𝐺𝑇

𝐸𝑇 03×1

𝐹𝑇 𝐻𝑇


=
𝜎2

2

[
𝐸𝐸𝑇 + 𝐹𝐹𝑇 𝐹𝐻𝑇

𝐻𝐹𝑇 𝐺𝐺𝑇 + 𝐻𝐻𝑇

]
=
𝜎2

2

[∑2
𝑗=1 [d𝑡

𝑗
×][d𝑡

𝑗
×]𝑇 [−d𝑡

1×](−s𝑡1)
(−s𝑡1)

𝑇 [−d𝑡
1×]

𝑇 d𝑡
2 · d𝑡

2 + s𝑡1 · s𝑡1

]
and Eq.(54) follows.

F Proof of Eqs. (55)-(58)
Equations Eqs.(55)- (56) stem directly from the definition of 𝚫q̌, and from Eq.(36) where 𝜹q̄ is

shown to be affine with respect to 𝚫q̌. For Eq.(57), let 𝑁2 and 𝑁 denote the following matrices:

𝑁2 = 𝚫q̌𝚫q̌𝑇 + 1
2

tr(𝑄𝚫q̌𝚫q̌𝑇 ) 𝐼4

𝑁 = 𝑃𝚫q̌ +
1
2

tr(𝑄𝑃𝚫q̌) 𝐼4
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Then consider the deviation:

𝚫q − 𝐸{𝚫q} = ( 𝐼4 − qq𝑇 )𝚫q̌ + (𝑁2 − 𝑁)q

Eq. (57) follows by applying the expectation operator while retaining only the second-order terms in
𝚫q̌. Eq. (58) stems from the fact that 𝜹q is affine in 𝚫q.
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