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ABSTRACT

This paper concerns the development and implementation of a novel model-based predictor for
the position and orientation of a telerobotic system subject to time delays. The considered time
delays are present both in the input and the output, meaning an input applied at the current time
affects the system after some delay and the result is presented to the operator after another delay.
Mathematical descriptions of two predictors are presented: a Smith predictor (SP), which is widely
used for mitigating time-delayed systems, and a Kalman predictor (KP). The SP and KP are then
implemented on simulated flight data generated using a small, fixed-wing uncrewed aerial vehicle
model. The KP provides more accurate predictions of all the aircraft states when compared to the
SP. The simulations are generated for two measurement noise conditions and it is observed that the
KP is more robust to measurement noise than the SP.

1 Introduction
Rapid advances in cyber-physical systems are redefining how humans interact with machines, with

new technologies such as touch interfaces, augmented reality displays, etc. The field of telerobotic oper-
ation, in particular, is expected to experience positive growth due to these technological advancements.
Sheridan [1] defined “teleoperation” as an extension of an individual’s ability to perceive and interact
with a distant environment and “telerobotics” represents a type of teleoperation where a human operator
assumes the role of an overseer. The human operator periodically communicates with a subordinate
“telerobot,” providing details regarding objectives, limitations, strategies, unforeseen circumstances, ex-
pectations, suggestions, and instructions pertaining to a specific task. In return, the operator receives
updates on progress, challenges, concerns, and, when necessary, unprocessed sensory data from the
robot. The telerobot carries out the task by combining the information received from the human operator
with its own artificial perception and intelligence.

Telerobotics is a broad field within robotics that has a diverse array of applications like space mis-
sions [2], military endeavors [3], underwater exploration [4], mining [5], handling of hazardous materials
[6], construction site monitoring [7, 8], and robotic-assisted medical procedures [9]. Any recreational,
academic, military, or business operations involving uncrewed aerial vehicles (UAVs) are thus teleoper-
ations by the definition given in the previous paragraph. The main focus of this paper is telerobotic UAV
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operation. A significant challenge for any telerobotic operation is achieving seamless and responsive
control over a robot or robotic system when operated remotely by a human operator. This challenge can
be attributed to several factors: time delay, limited sensor feedback, data transmission bandwidth, and
operator training. Of these factors, time delay is the most critical. In the scenarios considered here,
the total time delay is the time difference between a human operator’s control input and the telerobot’s
corresponding sensory feedback to the operator [10]. According to [10, 11], predictive feedback augmen-
tations (such as visual display or haptic feedback) can mitigate delay-induced degradation of a telerobotic
operation. Sheridan [2] considers a predictive display to have a computer-generated visual indicator that
displays the motion of the telerobotic system. The indicator is then projected ahead in time to offer the
operator immediate understanding of what might occur to the system given its current state and operator
inputs.

Numerous predictive display algorithms have been developed to mitigate time delays in teleoper-
ations. Brudnak’s predictive display [12] algorithm has been applied to a teleoperated ground vehicle
in simulation. Jung et al [13] have developed another predictive display algorithm for a robot-camera
system that mimicked human head-neck motion. Cox et al [14] implemented their predictive display
algorithm in UAV-based teleoperations and performed real-time flight tests. While these methods are
successful in mitigating time delay, there is a loss of information presented to the human operator by the
corresponding predictive display; see Figs. 29-30 in [12], Figs. 4-5 in [13], and Fig. 8 in [14].

In prior work [15, 16], the authors of this paper described a novel predictive display algorithm that
addresses the loss of information issue while mitigating time delays. The predictive display is capable of
mitigating time delays without limiting the visual information through the use of heterogeneous stereo
cameras. Additionally, the model-based predictive algorithm can perform well under low data trans-
mission bandwidth and the authors show, through human subject experiments, that additional operator
training is not required when the predictive display is active. The use of heterogeneous cameras is one of
the novel elements in [15, 16]. These cameras are not popular in computer vision applications because of
complex hardware setup, higher computational requirements, and lack of existing theory. However, Kang
et al [17] showed that heterogeneous stereo systems can be used similarly to homogeneous stereo systems
in performing different tasks like object tracking and depth perception. The heterogeneous system used
in [15, 16] consists of a pan-tilt-zoom (PTZ) camera for “central vision” and an omnidirectional camera
with fisheye lenses for “peripheral vision”. The rationale for using these two different cameras is to use
the high-resolution imagery of the PTZ camera for human-supervised structural inspection, for example,
or for defect detection by a trained artificial intelligence algorithm [18], while the lower-quality imagery
from the wide field-of-view omnidirectional camera provides supplemental information to improve the
human operator’s situational awareness. The predictive display algorithm developed based on such a
heterogeneous system backfills empty regions in the predicted pan-tilt-zoom camera view with imagery
from the wide field-of-view omnidirectional camera; see Fig. 7 in [16]. This combination of camera
imagery is achieved by comparing the currently available PTZ camera position and orientation with a
model-based prediction of the camera position and orientation due to operator input. The primary focus
of this paper is to implement and compare model-based predictors for the motion of a fixed-wing aircraft
subject to time delays in telerobotic operation. The outputs of the predictor can then be used as inputs to
the predictive display algorithm to mitigate the effect of delays in the telerobotic operation.

The paper is organized as follows: Section 2 defines the problem associated with telerobotic oper-
ations and reviews relevant literature. Section 3 provides a mathematical description of the telerobotic
system with delays and lists the assumptions. Section 4 derives the mathematical formulas for two
predictors, noting the differences between them. Section 5 describes the fixed-wing aircraft model used
for simulations. Section 6 contains the parameters used in the simulation studies. Section 7 describes the
results of the simulation and presents some key findings. Finally, Section 8 provides conclusions from
the effort.
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2 Overview of the Problem and Prior Work
A representative telerobotic operation scheme is illustrated in Fig. 1a where a human operator sends

commands to a system or a plant. The input commands experience time delays in the communication
network. These delayed inputs then affect the plant and the corresponding output is generated. However,
this output is again delayed as it uses the same communication network as the input. This delayed output
finally reaches the system and the feedback reaches the human operator through some interfacing device,
such as a visual display. The human operator does not see the effect of an input until the total time delay,
the sum of the input and the output delays, has passed.

(a) (b)

Fig. 1 (a) An overview of the telerobotic operation. (b) Telerobotic operation with a predictive display.

A predictive display takes the predicted outputs from a predictor and modifies the feedback to show
the human operator what would happen almost instantly. The human operator receives the information
immediately after issuing a command without needing to wait through the total time delay. As mentioned
in Section 1, the focus of this paper is on the implementation of a predictor that can be used by the
predictive display algorithm developed in [15, 16] that predicts over both input and output delays. The
predictor has access to the past and current commands sent to the plant and the delayed outputs sent from
the plant. Based on some known model of the plant, the predictor then predicts the output that would be
observed if there were no delays present in the system.

The Smith predictor (SP) [19] is the most well-known time delay compensation technique. It has been
widely used in industry since its introduction. Originally designed for chemical engineering processes,
the SP aims to improve the performance of classical proportional-integral-derivative (PID) controllers in
a system with large time delays. Application of the SP can be found in controlling chemical processes
[20, 21] where the focus is to compensate for the destabilizing effect of time delay in the feedback loop
in order to recover the response of a delay-free system. Studies done in [22–25] combine the time delay
compensation technique of the SP with different PI and PID controllers and show that controllers using
the predicted output from the SP can stabilize otherwise unstable plants. Other studies have provided
parameter tuning guidelines for the SP-based controller when the delay is unknown [26, 27]. Several
modifications and improvements of the SP have been proposed in the last few decades to control a delayed
process with an integrator [28], to design an adaptive controller for a system with time delays [29], to
analyze plants with time delays and saturation [30], and to compensate for time delays in nonlinear plants
[31, 32]. Aside from chemical engineering processes, the SP has also been used in tracking a path by
ground-based mobile robots [33, 34], increasing position tracking accuracy and minimizing drift in space
telerobotic systems [35], and designing predictive compensators for time delay mitigation in UAVs [36].

Some of the weaknesses of the SP, according to [37], are:

• The SP requires on an accurate model of the time delay in the system. If the delay is not accurately
modeled or if it varies over time, its performance can be compromised.

• The SP requires an accurate mathematical model of the plant. Even a small inaccuracy in the
model can lead to suboptimal or unstable control performance.
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• The SP is primarily designed for linear systems with repeatable time delays. It can be challenging
to apply this technique to nonlinear systems or systems with varying delay characteristics.

• The SP performs poorly when there is a lot of process or measurement noise.
• When implementing the SP, incorrect estimates of the initial conditions result in incorrect predic-

tion.

Besides the SP, there are other predictive schemes like Moore’s analytical predictor (AP) [38].
Designed specifically for discrete-time systems, Moore’s proposed algorithm includes a sampling period
correction. Wong et al [39] showed that the prediction of the AP matches that of the SP only for the special
case of a first-order system with time delays. It isn’t easy to design APs for higher-order process models
and the predictor was developed for proportional-integral (PI) feedback, which limits its applicability.
Other prediction approaches exist like using Taylor series approximations to nonlinear systems [40] or
disturbance observer-based prediction [41]. One study focused on controlling time-delayed systems with
a steady-state Kalman predictor (KP) [42] where the authors use the Kalman filter-based state estimator
to obtain the state estimate and a predictor to propagate the estimated state to overcome the time delay.
The study also showed that a KP can filter out past disturbances and noise affecting system.

In the work mentioned above, the focus was to control time-delayed systems using predicted mea-
surements or state information. The development of the predictors was a by-product of the original goal.
Here, we focus entirely on the development, comparison, and performance analysis of the predictors.
The primary contributions of this paper are to:

• develop a generalized Kalman predictor (KP) framework for predicting the states or the outputs of
a discrete-time telerobotic system containing both input and output delays.

• compare the predictor performance of the KP with the SP under the influence of process and
measurement noise.

• analyze the performance of the KP and the SP in predicting the motion of a fixed-wing aircraft
using a six-degree-of-freedom (6-DoF), nonlinear dynamic model.

3 Mathematical Preliminaries

Human

Predictor

Predic ve 

Display

Plant

Fig. 2 A discrete-time representation of a telerobotic predictor system with input and output delays.

Figure 2 represents a discrete-time, linear, time-varying telerobotic system with pure input and
output delays. Here and in the subsequent discussion, it is assumed that the system is sampled at constant
intervals with sample period 𝑇s. That is, inputs are applied and outputs are measured at times 𝑡𝑘 = 𝑘𝑇s
where 𝑘 ∈ {0, 1, 2, . . .} is an integer time index. The input delay is 𝜏1 = 𝑑1𝑇s and the output delay is
𝜏2 = 𝑑2𝑇s for some non-negative integers 𝑑1 and 𝑑2. In Fig. 2, the delay operator 𝔇𝑑 , also known as
the shift operator, shifts the signal by 𝑑 steps. A continuous-time signal 𝒚(𝑡) that is delayed by time
𝜏1 is denoted 𝒚del(𝑡) = 𝒚(𝑡 − 𝜏1). In discrete-time, this delay corresponds to a shift by 𝑑1 time steps:
𝒚del(𝑡𝑘 ) = 𝔇𝑑1 𝒚(𝑡𝑘 ) = 𝒚(𝑡𝑘−𝑑1). We use the more compact notation 𝒚del,𝑘 = 𝔇𝑑1 𝒚𝑘 = 𝒚𝑘−𝑑1 where
𝒚𝑘 = 𝒚(𝑡𝑘 ).
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For the linear discrete-time system

𝒙𝑘+1 = 𝑭𝑘𝒙𝑘 + 𝑮𝑘𝒖𝑘−𝑑1 + v𝑘 (1)
𝒚𝑘 = 𝑯𝑘𝒙𝑘 + w𝑘 (2)

shown in Fig. 2, 𝒙(·) ∈ R𝑛𝑥 is the state vector, 𝑭(·) ∈ R𝑛𝑥×𝑛𝑥 is the state matrix, 𝒖(·) ∈ R𝑛𝑢 is the input
vector, 𝑮 (·) ∈ R𝑛𝑥×𝑛𝑢 is the input matrix, 𝒚 (·) ∈ R𝑛𝑦 is the output vector, 𝑯(·) ∈ R𝑛𝑦×𝑛𝑥 is the output
matrix, v(·) ∈ R𝑛𝑥 is the process noise vector, and w(·) ∈ R𝑛𝑦 is the measurement noise vector.

In Eqn. (1), the plant is subjected to the delayed operator input 𝒖𝑘−𝑑1 instead of the current input
𝒖𝑘 . Moreover, the human operator’s knowledge of the system state is based on the delayed output
𝒚𝑘−𝑑2 = 𝔇𝑑2 𝒚𝑘 rather than the current output 𝒚𝑘 . The goal of the predictor is to provide the operator
with a predicted output at a time 𝑑1 + 𝑑2 + 1 steps ahead of the present time, using only the system model,
the current output 𝒚𝑘−𝑑2 , and the input history 𝒖(·) from time 𝑡𝑘−𝑑1−𝑑2−1 to 𝑡𝑘 . This predicted output
𝒚̂∗
𝑘+𝑑1+1 should capture the effect of the currently generated command 𝒖𝑘 and be presented to the operator

immediately. (In the motivating application of a predictive display, the information would be presented
to the operator as an image, but more general systems are considered here.)

Note that

𝒚𝑘−𝑑2 = 𝔇𝑑2 𝒚𝑘

= 𝔇𝑑2 [𝑯𝑘𝒙𝑘 + w𝑘 ]
= 𝑯𝑘−𝑑2𝒙𝑘−𝑑2 + w𝑘−𝑑2

= 𝑯𝑘−𝑑2 [𝑭𝑘−𝑑2−1𝒙𝑘−𝑑2−1 + 𝑮𝑘−𝑑2−1𝒖𝑘−𝑑1−𝑑2−1 + v𝑘−𝑑2−1] + w𝑘−𝑑2

(3)

From Eqn. (3) it can be seen that the currently available measurement is the result of the input command
𝒖𝑘−𝑑1−𝑑2−1. Noting that

𝒚𝑘+𝑑1+1 = 𝑯𝑘+𝑑1+1 [𝑭𝑘+𝑑1𝒙𝑘+𝑑1 + 𝑮𝑘+𝑑1𝒖𝑘 + v𝑘+𝑑1+1] + w𝑘+𝑑1+1

the current input command 𝒖𝑘 affects the output 𝒚𝑘+𝑑1+1. The job of the predictor is to provide an estimate
of 𝒚𝑘+𝑑1+1 immediately, despite the fact that the effect of the input 𝒖𝑘 on the plant will be delayed (by 𝑑1
time steps) and the observation of that effect will be delayed even further (by 𝑑2 time steps).

The term 𝑑1 + 𝑑2 + 1 in the expressions above is called the “delay horizon.” The delay horizon
represents two important quantities: 1) the number of time steps the predictor must account for to
mitigate the delay and 2) the number of past input values that must be stored for use by the predictor.

In formulating a prediction strategy to address the challenge above, the following assumptions are
made:

• The input and output delays are known and constant.
• The model ({𝑭(·) ,𝑮 (·) ,𝑯(·)} is known.
• The system is (linearly) observable.
• The measurement and process noise sequences v𝑘 and w𝑘 are additive, Gaussian, purely random

sequences with E[v𝑘 ] = 0, E[w𝑘 ] = 0, E[v𝑘vT
𝑘
] = 𝑽𝑘 , and E[w𝑘wT

𝑘
] = 𝑾𝑘 .

4 Derivation of the SP and the KP
In comparing the performance of the two predictors, we consider their ability to accurately predict

fixed-wing aircraft motion generated by a 6-DoF flight dynamic model and to mitigate the effects of
process and measurement noise. We begin by presenting the mathematical equations for the predictors.
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4.1 Equations for the SP
A Smith predictor (SP) uses a linear system model to predict future outputs. In particular, for the

scenario described here, the SP is designed to predict the output at time step 𝑘 + 𝑑1 + 1 due to the current
input 𝒖𝑘 , whose effect will be delayed by 𝑑1 steps. To do so, the SP subtracts a model-based estimate
𝒚̂𝑘−𝑑2 from the currently available (but output delayed) measurement 𝒚𝑘−𝑑2 and adds a model-based
estimate 𝒚̂𝑘+𝑑1+1 computed as if there were no delay:

𝒚̂∗𝑘+𝑑1+1 = 𝒚𝑘−𝑑2 + ( 𝒚̂𝑘+𝑑1+1 − 𝒚̂𝑘−𝑑2) (4)

where, from Eqn. (3),

𝒚̂𝑘−𝑑2 = 𝑯𝑘−𝑑2 [𝑭𝑘−𝑑2−1𝒙̂𝑘−𝑑2−1 + 𝑮𝑘−𝑑2−1𝒖𝑘−𝑑1−𝑑2−1] (5)
𝒚̂𝑘+𝑑1+1 = 𝑯𝑘+𝑑1+1 [𝑭𝑘+𝑑1 𝒙̂𝑘+𝑑1 + 𝑮𝑘+𝑑1𝒖𝑘 ] (6)

Note that Eqns. (5)-(6) do not account for process or measurement noise and they require accurate
initial state estimates 𝒙̂𝑘−𝑑2−1 and 𝒙̂𝑘+𝑑1 as well as an accurate dynamic model.

4.2 Equations for the KP
The Kalman predictor (KP) is closely related to the Kalman filter (KF), which is the minimum

variance state estimator for a discrete-time linear system subject to Gaussian, purely random process and
measurement noise [43]. In describing the filter, the subscript “𝑖 |𝑘” will be used to indicate a value at
time step 𝑖 obtained using information available through time step 𝑘 . The KF algorithm proceeds in five
steps, after defining the initial state estimate 𝒙̂0|0 and the initial state estimate error covariance 𝑷̂0|0. At
time 𝑡𝑘−1, the measurement that is available to update the state estimate is

𝒚𝑘−𝑑2−1 = 𝑯𝑘−𝑑2−1𝒙𝑘−𝑑2−1 + w𝑘−𝑑2−1

To simplify notation, the shifted time index 𝑙 = 𝑘−𝑑2 is introduced. The one-step state estimate prediction
starting at time step 𝑙 − 1 is

𝒙̂𝑙 |𝑙−1 = 𝑭𝑙−1𝒙̂𝑙−1|𝑙−1 + 𝑮 𝑙−1𝒖𝑙−𝑑1−1 (7)

The corresponding state estimate error covariance is

𝑷𝑙 |𝑙−1 = 𝑭𝑙−1𝑷𝑙−1|𝑙−1𝑭
T
𝑙−1 + 𝑽𝑙−1 (8)

The filter gain, known as the Kalman gain, is

𝑳𝑙 = 𝑷𝑙 |𝑙−1𝑯
T
𝑙 [𝑯𝑙𝑷𝑙 |𝑙−1𝑯

T
𝑙 +𝑾𝑙]−1 (9)

Finally, the measurement updated state and covariance estimates are

𝒙̂𝑙 |𝑙 = 𝒙̂𝑙 |𝑙−1 + 𝑳𝑙 (𝒚𝑙 − 𝒚̂𝑙 |𝑙−1) [where 𝒚̂𝑙 |𝑙−1 = 𝑯𝑙 𝒙̂𝑙 |𝑙−1] (10)
𝑷𝑙 |𝑙 = (I − 𝑳𝑙𝑯𝑙)𝑷𝑙 |𝑙−1 (11)

The Kalman predictor (KP) uses the measurement updated state and covariance estimates recursively
to find the predicted state 𝒙̂∗

𝑘+𝑑1+1|𝑙 , predicted covariance 𝑷∗
𝑘+𝑑1+1|𝑙 , and predicted output 𝒚̂∗

𝑘+𝑑1+1|𝑙 . Taking
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Eqn. (10), the recursive predictor can be obtained by repeatedly applying the relationship in Eqn. (7)

𝒙̂𝑙+1|𝑙 = 𝑭𝑙 𝒙̂𝑙 |𝑙 + 𝑮 𝑙𝒖𝑙−𝑑1

⇒ 𝒙̂𝑙+2|𝑙 = 𝑭𝑙+1𝒙̂𝑙+1|𝑙 + 𝑮 𝑙+1𝒖𝑙−𝑑1+1
...

⇒ 𝒙̂𝑙+𝑑1+𝑑2+1|𝑙 = 𝑭𝑙+𝑑1+𝑑2 𝒙̂𝑙+𝑑1+𝑑2 |𝑙 + 𝑮 𝑙+𝑑1+𝑑2𝒖𝑙−𝑑1+𝑑1+𝑑2

𝒙̂𝑘+𝑑1+1|𝑘−𝑑2 = 𝑭𝑘+𝑑1 𝒙̂𝑘+𝑑1 |𝑘−𝑑2 + 𝑮𝑘+𝑑1𝒖𝑘 [Substituting 𝑙 = 𝑘 − 𝑑2]

(12)

The recursive state prediction stops when the current input 𝒖𝑘 appears. The relationships captured in
Eqn. (12) can be re-written as

𝒙̂𝑙+𝑖 |𝑙 = 𝑭𝑙+𝑖−1𝒙̂𝑙+𝑖−1|𝑙 + 𝑮 𝑙+𝑖−1𝒖𝑙−𝑑1+𝑖−1 [where 𝑖 ∈ {1, 2, 3, . . . , 𝑑1 + 𝑑2 + 1}] (13)

⇒ 𝒙̂𝑙+𝑖 |𝑙 =
©­«L

𝑖−1∏
𝑗=0

𝑭𝑙+ 𝑗
ª®¬ 𝒙̂𝑙 |𝑙 +

𝑖−1∑︁
𝑚=0

©­«L
𝑖−1∏

𝑗=𝑚+1
𝑭𝑙+ 𝑗

ª®¬𝑮 𝑙+𝑚𝒖𝑙−𝑑1+𝑚 (14)

where the superscript L preceding the product symbol
∏

denotes left multiplication. For example,
L∏𝑛

𝑗=0 𝑸 𝑗 = 𝑸𝑛 · · ·𝑸1𝑸0. The predicted output corresponding to the predicted state is obtained from
Eqn. (13):

𝒚̂∗
𝑘+𝑑1+1|𝑘−𝑑2

= 𝑯𝑘+𝑑1+1𝒙̂𝑘+𝑑1+1|𝑘−𝑑2 (15)

One may also compute the error covariance associated with the predicted state. Taking Eqn. (11)
and applying the relationship in Eqn. (8) gives

𝑷𝑙+1|𝑙 = 𝑭𝑙𝑷𝑙 |𝑙𝑭
T
𝑙 + 𝑽𝑙

⇒ 𝑷𝑙+2|𝑙 = 𝑭𝑙+1𝑷𝑙+1|𝑙𝑭
T
𝑙+1 + 𝑽𝑙+1

...

⇒ 𝑷𝑙+𝑑1+𝑑2+1|𝑙 = 𝑭𝑙+𝑑1+𝑑2𝑷𝑙+𝑑1+𝑑2 |𝑙𝑭
T
𝑙+𝑑1+𝑑2

+ 𝑽𝑙+𝑑1+𝑑2

(16)

Equation. (16) can be expressed using recursion

𝑷𝑙+𝑖 |𝑙 = 𝑭𝑙+𝑖−1𝑷𝑙+𝑖−1|𝑙𝑭
T
𝑙+𝑖−1 + 𝑽𝑙+𝑖−1 [with 𝑖 ∈ {1, 2, 3, . . . , 𝑑1 + 𝑑2 + 1}] (17)

5 Fixed-wing Aircraft Model
A fixed-wing aircraft model is used to simulate flight data to implement and compare the SP and

the KP algorithms. An Earth-fixed north-east-down (NED) frame defined by the orthonormal vectors
{𝒊I, 𝒋I, 𝒌I} is adopted as the frame of reference; it is assumed to be an inertial frame over the time and
space scales considered here. The body-fixed reference frame with origin at the aircraft’s center of gravity
is described by the orthonormal vectors {𝒊B, 𝒋B, 𝒌B} where the positive 𝒊B axis points out the nose of
the aircraft, the positive 𝒋B axis points out of the right wing of the aircraft, and the positive 𝒌B axis
points down through the underside of the aircraft. The assumptions employed in developing the aircraft
equations of motion are: (i) Earth is flat and fixed in inertial space, (ii) the air is at rest, (iii) the aircraft
is a rigid body, (iv) the air density and gravitational acceleration are constant, and (v) the aircraft mass 𝑚
and inertia matrix 𝑰 ∈ R3×3 are constant. The kinematic and dynamic equations for rigid aircraft motion
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are then

¤𝒔 = 𝑹IB(𝚯)𝒗 (18a)
¤𝚯 = 𝑳IB(𝚯)𝝎 (18b)

¤𝒗 = 𝒗 × 𝝎 + 1
𝑚
𝑭A + 1

𝑚
𝑹T

IB𝑭G (18c)

¤𝝎 = 𝑰−1(𝑰𝝎 × 𝝎) + 𝑰−1𝑴A (18d)

where 𝒔 = [𝑥, 𝑦, 𝑧]T ∈ R3 represents the NED position of the aircraft and 𝚯 = [𝜙, 𝜃, 𝜓]T ∈ R3 is the
vector of roll-pitch-yaw Euler angles parameterizing the proper rotation matrix 𝑹IB that maps free vectors
from the body frame to the inertial frame:

𝑹IB(𝚯) =
©­­«

cos 𝜃 cos𝜓 cos𝜓 sin 𝜃 sin 𝜙 − cos 𝜙 sin𝜓 cos𝜓 sin 𝜃 cos 𝜙 + sin 𝜙 sin𝜓
cos 𝜃 sin𝜓 sin 𝜙 sin 𝜃 sin𝜓 + cos 𝜙 cos𝜓 sin 𝜃 cos 𝜙 sin𝜓 − sin 𝜙 cos𝜓
− sin 𝜃 cos 𝜃 sin 𝜙 cos 𝜃 cos 𝜙

ª®®¬ (19)

The linear and angular velocity of the aircraft with respect to the NED frame, but expressed in the
body-fixed frame, are 𝒗 = [𝑢, 𝑣, 𝑤]T ∈ R3 and 𝝎 = [𝑝, 𝑞, 𝑟]𝑇 ∈ R3, respectively. The matrix

𝑳IB(𝚯) =
©­­«

1 sin 𝜙 tan 𝜃 cos 𝜙 tan 𝜃
0 cos 𝜙 − sin 𝜙

0 sin 𝜙 sec 𝜃 cos 𝜙 sec 𝜃

ª®®¬ (20)

relates the aircraft’s body angular velocity to the Euler angle rates as shown in Eqn. (18b). The aircraft
weight expressed in the NED frame is 𝑭G = [0, 0, 𝑚𝑔]T. The aerodynamic force and moment are denoted
𝑭A and 𝑴A, respectively. Here, we consider the MTD2 aircraft shown in Fig. 3. We adopt the propulsion
and aerodynamic models that were identified empirically as described in [44, 45] and used in [46, 47].
The aero-propulsive forces and moments are given by

𝑭A =
1
2
𝜌∥𝒗∥2𝑆

©­­«
𝐶𝑋 (𝒗,𝝎, 𝜹)
𝐶𝑌 (𝒗,𝝎, 𝜹)
𝐶𝑍 (𝒗,𝝎, 𝜹)

ª®®¬ + 𝐷4𝜌𝜂𝑒𝜂n𝛿
2
rps

©­­«
𝐶𝐽 (𝜹)

0
0

ª®®¬ (21)

𝑴A =
1
2
𝜌∥𝒗∥2𝑆

©­­«
𝑏𝐶𝑙 (𝒗,𝝎, 𝜹)
𝑐𝐶𝑚 (𝒗,𝝎, 𝜹)
𝑏𝐶𝑛 (𝒗,𝝎, 𝜹)

ª®®¬ (22)

where 𝜹 = [𝛿a, 𝛿e, 𝛿r, 𝛿rps]T are the control inputs describing aileron, elevator, rudder, and thrust com-
mands, 𝑆 is the aircraft wing surface area, 𝑐 is the mean aerodynamic chord, 𝑏 is the wingspan, 𝜌 is
the air density, 𝐷 is the diameter of the propeller, 𝜂𝑒 is the propeller efficiency, and 𝜂n is the number of
propellers. The non-dimensional thrust, force, and moment coefficients are

𝐶𝐽 = 𝐶𝐽0 + 𝐶𝐽𝐽 + 𝐶𝐽2𝐽2 (23a)
𝐶𝑋 = 𝐶𝑋0 + 𝐶𝑋𝛿e𝛿e + 𝐶𝑋𝛼

𝛼 + 𝐶𝑋2
𝛼
𝛼2 (23b)

𝐶𝑌 = 𝐶𝑌𝑝
𝑝 + 𝐶𝑌r𝑟 + 𝐶𝑌𝛿a𝛿a + 𝐶𝑌𝛿r 𝛿r + 𝐶𝑌𝛽 𝛽 (23c)

𝐶𝑍 = 𝐶𝑍0 + 𝐶𝑍𝑞𝑞 + 𝐶𝑍𝛼
𝛼 (23d)

𝐶𝑙 = 𝐶𝑙𝑝 𝑝 + 𝐶𝑙𝛿a𝛿a + 𝐶𝑙𝛽 𝛽 (23e)
𝐶𝑚 = 𝐶𝑚0 + 𝐶𝑚𝑞

𝑞 + 𝐶𝑚 𝛿e𝛿e + 𝐶𝑚𝛼
𝛼 (23f)

𝐶𝑛 = 𝐶𝑛r𝑟 + 𝐶𝑛𝛿a𝛿a + 𝐶𝑛𝛿r 𝛿r + 𝐶𝑛𝛽 𝛽 (23g)
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where the non-dimensional terms in Eqn. (23) are

𝛼 = tan−1
(𝑤
𝑢

)
𝛽 = sin−1

(
𝑣

∥𝒗∥

)
𝑝 =

𝑝𝑏

2∥𝒗∥ 𝑞 =
𝑞𝑐

2∥𝒗∥ 𝑟 =
𝑟𝑏

2∥𝒗∥ 𝐽 =
∥𝒗∥
𝛿rps𝐷

The SP and the KP framework require linear system models. To apply these predictors to the aircraft
motion model, the nonlinear system (18) is linearized about a nominal trajectory. The particular case of
constant-speed, wings-level flight at a constant altitude is considered in this paper. Recognizing that the
aircraft position 𝒔 plays no role in the dynamic equations, we define a reduced-dimensional state vector
𝒙 = [𝚯T, 𝒗T,𝝎T]T. Fixing the value of the propeller speed 𝛿rps, we also define a reduced-dimensional
input vector 𝒖 = [𝛿a, 𝛿e, 𝛿r]T. With these simplifications, we rewrite equations (18b-d) as

¤𝒙 = 𝒇 (𝒙, 𝒖) =
©­­«

𝑳IB(𝚯)𝝎
𝒗 × 𝝎 + 𝑭A + 𝑹IB(𝚯)T𝑭G

𝑰−1 (𝑰𝝎 × 𝝎) + 𝑰−1𝑴A

ª®®¬ (24)

To apply the SP and KP algorithms, the system (24) is linearized about the equilibrium flight condition
{𝒙(𝑡), 𝒖(𝑡)} = {𝒙∗, 𝒖∗} resulting in the linear, time-invariant system

Δ ¤𝒙 = 𝑨Δ𝒙 + 𝑩Δ𝒖 (25)

where Δ𝒙 = 𝒙 − 𝒙∗ and Δ𝒖 = 𝒖 − 𝒖∗ and where

𝑨 =
𝜕 𝒇

𝜕𝒙

����
𝒙=𝒙∗,𝒖=𝒖∗

and 𝑩 =
𝜕 𝒇

𝜕𝒖

����
𝒙=𝒙∗,𝒖=𝒖∗

(26)

The linear system (25) is valid for small perturbations from the nominal condition.

The LTI system given above is a continuous-time system. To obtain the discrete-time system matrices
𝑭𝑘 and 𝑮𝑘 in Eqn. (1), one must discretize the continuous time system, e.g., by assuming a zero-order
hold on the inputs and computing the sampled data solution. To obtain the position 𝒔 of the aircraft in
the inertial frame, the translational kinematic equation (18a) is integrated in parallel with the predictor
equations based on the reduced-dimensional model (24). The position update is

𝒔𝑘+𝑖+1 = 𝒔𝑘+𝑖 + 𝑹IB(𝚯̂𝑘+𝑖) 𝒗̂𝑘+𝑖𝑇s (27)

where 𝑖 = 1, 2, 3, . . . , 𝑑1 + 𝑑2 + 1.

Table 1 Fixed-wing UAV parameters [44].

Parameter Symbol Value
Mass 𝑚 3.311 kg

Moments of inertia

𝐼𝑥𝑥

𝐼𝑦𝑦

𝐼𝑧𝑧

𝐼𝑥𝑧

0.319 kg-m2

0.267 kg-m2

0.471 kg-m2

0.024 kg-m2

Wing span 𝑏 1.8 m
Wing surface area 𝑆 0.457 m2

Mean aerodynamic chord 𝑐 0.254 m Fig. 3 The MTD2 aircraft.
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6 Simulation Setup
The properties of the MTD2 aircraft used to obtain simulated flight data are given in Table 1. Note

that the cross products of inertia 𝐼𝑥𝑦 and 𝐼𝑦𝑧 are zero for a symmetric aircraft. Numerical values of
the aerodynamic force and moment coefficients from Eqn. (23) are provided in Table 2. The aircraft
was simulated along the steady trajectory for which 𝒙∗ = [0, 0.0210, 0, 18.1568, 0, 0.3808, 0, 0, 0]T and
𝒖∗ = [0,−0.0045, 0]T (where all values are given in SI units), which was obtained by solving the nonlinear
subsystem in Eqn. (24) for a wings-level, constant altitude, equilibrium flight condition. The aircraft
generated constant thrust with the propeller rotation rate held constant at 𝛿rps = 220 rad/s throughout the
simulation. The propeller diameter was 𝐷 = 0.254 m, the propeller efficiency was set to 𝜂𝑒 = 0.9, and
two propellers were used: 𝜂n = 2.

Table 2 Aerodynamic force and moment coefficients for the MTD2.

Coefficient Value Coefficient Value Coefficient Value
𝐶𝐽0 -0.131 𝐶𝑌𝑝

0.221 𝐶𝑍0 -0.225
𝐶𝐽 -0.040 𝐶𝑌𝑟 0.230 𝐶𝑍𝑞 -12.54
𝐶𝐽2 0.116 𝐶𝑌𝛿a 0.118 𝐶𝑍𝛼

-4.451
𝐶𝑋0 -0.428 𝐶𝑌𝛿r 0.136
𝐶𝑋𝛿e 0.051 𝐶𝑌𝛽 -0.525
𝐶𝑋𝛼

0.282
𝐶𝑋

𝛼2 3.292

Coefficient Value Coefficient Value Coefficient Value

𝐶𝑙𝑝 -0.386 𝐶𝑚0 0.008 𝐶𝑛𝑟 -0.119
𝐶𝑙𝛿a -0.137 𝐶𝑚𝑞

-14.02 𝐶𝑛𝛿a 0.013
𝐶𝑙𝛽 -0.039 𝐶𝑚 𝛿e -0.415 𝐶𝑛𝛿r -0.068

𝐶𝑚𝛼
-0.471 𝐶𝑛𝛽 0.103

The process and measurement noise covariance matrices for the KP were chosen as 𝑽𝑘 = 0.001 · I
and 𝑾𝑘 = diag( [0.01, 0.01, 0.01, 0.1, 0.1, 0.1, 0.01, 0.01, 0.01]) where, again, the values are given in SI
units. The initial states of the SP and KP were chosen to be the steady motion of the aircraft: 𝒙̂𝑘−𝑑20 = 𝒙∗.
The initial position estimate of the aircraft was 𝒔0 = [0, 0,−100]T. For the SP, the initial predicted
state 𝒙̂𝑘+𝑑10 was obtained by recursively propagating 𝒙̂𝑘−𝑑20 using the linear model in Eqn. (25). The
simulation was carried out with standard sea level density and with no wind.

To analyze the performance of the predictors, simulation studies were done for the following test
conditions:

• Two different perturbations from the nominal wings-level equilibrium flight condition: elevator
doublets of amplitude (a) 2◦ and (b) 16◦

• Two different noise covariances: (i) 𝑾𝑘 and (ii) 10𝑾𝑘

The 2◦ elevator doublet is in the range of a typical small perturbation from equilibrium, resulting in a
motion well described by a linearized dynamic model. This maneuver is used to analyze the accuracy of
the SP and the KP under small perturbations. The more aggressive 16◦ elevator doublet takes the aircraft
well away from equilibrium and is used to gauge how well the linear predictors like the SP and the KP
perform in predicting the nonlinear behavior of the aircraft. The input and the output delays used for
both of the cases were 𝜏1 = 𝜏2 = 1 s. The sampling time was chosen to be 𝑇s = 0.1 s. Figure 4 shows
the commanded input histories as well as the trajectory of the aircraft due to the input. Figure 4a shows
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Fig. 4 Commanded (undelayed) and realized (delayed) elevator input histories (top) and aircraft position
histories (bottom) for two doublet amplitudes with noise covariance 𝑾𝑘 .

the execution of an elevator doublet of amplitude 2◦ and duration 2 s. The solid black line indicates the
doublet commanded by the human operator starting at 𝑡 = 5 s. The dashed red line indicates the delayed
doublet that affects the system after the input delay starting at 𝑡 = 6 s. Figure 4b is similar to Fig. 4a
in all aspects except for the amplitude. The trajectories generated due to these commanded inputs are
depicted in Figs. 4c and 4d. Both the trajectories start from the same initial state but Fig. 4d shows a
steeper descent than Fig. 4c as the doublet amplitude is higher.

7 Results and Discussions
Figure 5 shows the aircraft’s northward position under the action of the 16◦ elevator input with

different types of delays. The black trajectory labeled “Undelayed” is the trajectory that is obtained by
setting both delays to zero: 𝜏1 = 𝜏2 = 0 s. The red trajectory labeled “Input delay” is the trajectory
generated when the input is delayed but the output is obtained instantly, that is, 𝜏1 = 1 s and 𝜏2 = 0 s.
This is the actual output of the system under the action of delayed input commands, but this output is not
perceived by the operator when there is an output delay. The blue trajectory is the red trajectory delayed
by 𝜏2 = 1 s. It is the delayed measurement that is available to the predictor (or that an operator would
observe in the absence of predictive compensation). The function of the predictor is to eliminate these
time delays in the telerobotic feedback loop which is why the predicted outputs from the two predictors
are compared with the undelayed output of the system.

For this simulation study, we consider full state measurement: 𝒚 = 𝒙. Since the command applied to
the aircraft is an elevator doublet, however, only the longitudinal dynamics of the aircraft are affected. The
only state variables affected by this command are 𝑥, 𝑧, 𝜃, 𝑢, 𝑤, 𝑞. Thus, in evaluating the performance of
the two predictors, only these longitudinal states variables are considered. Figure 6 shows the trajectory
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Fig. 5 Effect of different delays on the aircraft’s north position.

of the aircraft under the influence of the doublet command over a 30 s window. The black trajectory in
each of the subplots of Fig. 6 is the “undelayed measurement” of the system which is how the system
would have behaved if there were no delays present (𝜏1 = 𝜏2 = 0). The dashed red line is the output
from the SP and the dashed blue line is the output from the KP. Inspecting Fig. 6 reveals that the KP
performs better than the SP in predicting the large perturbation motion of the delayed system, adhering
more closely to the fictitious undelayed output. The KP also filters noise better than the SP.

To assess the performance of the predictors qualitatively, the root mean square error (RMSE) between
the predicted output and the noise-free undelayed output was computed and averaged over ten simulation
runs for each of the four test cases: {(a), (b), (i), (ii)}. The total difference between the predicted output
and the undelayed output at some time 𝑡𝑘 was computed and averaged over the total number of data points
across all ten simulation runs for each test case. The square root of the value gives the RMSE for that
state. The process was repeated for the two different predictors for all six longitudinal outputs across all
four test cases. The complete results can be obtained from the GitHub repository [48] which contains
the simulation code and the figures.

The resulting RMSEs are shown in the bar charts presented in Fig. 7. Each subfigure contains the
average RMSE obtained for two particular state variables (indicated by the labels) from the ten simulation
runs of the two predictors with two different doublet inputs: (a) 2◦ and (b) 16◦. The upper and lower
rowscorrespond to the two measurement noise covariance matrices (i) 𝑾𝑘 and (ii) 10𝑾𝑘 , respectively.
The units for these RMSE results are standard SI units: 𝑥, 𝑧 in m, 𝑢, 𝑤 in m/s, 𝜃 in ◦, and 𝑞 in ◦/s. Key
observations from these simulation studies are summarized below.

• Effect of doublet amplitude: As the amplitude of the doublet increases from 2◦ to 16◦, the linear
predictors become inaccurate, as indicated by the increased RMSE; see Fig. 7. When the doublet
amplitude is small, the KP performs slightly better than the SP as indicated by the RMSE values in
Fig. 7. The SP has a very high RMSE in the 𝑥 and 𝑧 states as the Euler integration using Eqn. (27)
builds up error due to incorrect prediction and initial states. This drift can be observed in the 𝑥

and 𝑧 states in Fig. 6.
• Effect of noise: As the measurement noise covariance increases from 𝑾𝑘 to 10𝑾𝑘 , the RMSE

for both predictors increases; compare the first row of Fig. 7 with the corresponding second row
to observe the change. The RMSE values across all six states and doublet commands increase as
the noise factor increases. The KP accounts for noise, as the prediction algorithm is built on the
KF algorithm. Comparing the first and second rows of Fig. 7, one sees that the RMSE values for
the KP generally do not increase as dramatically as they do for the SP when measurement noise
covariance is increased.
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Summarizing the results from the simulation studies discussed above, we note that:

• The SP performs worse than the KP, often substantially worse, in all of the test variables and test
cases indicating that it is not a suitable predictor for the aerial telerobotic application considered
here. For lower doublet amplitudes, the KP performs well, but as the amplitude increases the
performance degrades.

• The performance of both predictors suffers when the noise covariance is increased. However, the
incorporation of noise covariance in the KF algorithm helps the KP mitigate some effects of noise.

The RMSE data verify that predicting large perturbation motions of a nonlinear system like a rigid
fixed-wing aircraft using linear predictors can produce large errors. The KP is effective for small
perturbations from the nominal flight condition, but the SP performs poorly even in this case. To
accommodate larger perturbations, the KP can be extended to include nonlinearities, as is done in the
extended Kalman filter. The development of this extended Kalman predictor (EKP) is described in [49],
with performance comparisons to the KP and SP presented here.

8 Conclusions
A general Kalman predictor (KP) has been developed in this paper to mitigate input and output time

delays in telerobotic systems. The KP was applied to a nonlinear fixed-wing aircraft simulation model
and compared with the classical Smith predictor (SP). The KP is better than the SP at predicting aircraft
motion and is more robust to noise. However, the performance of the KP deteriorates as the amplitude of
the input perturbations increases to cause larger perturbations from the nominal state of motion. In these
cases, a nonlinear predictor such as the extended Kalman predictor described in [49] should be used.
Other possible improvements include modifying the KP (or extended KP) framework to accommodate
varying time delays and sampling time intervals.
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Appendix
The appendix contains the graphs of the results for the different maneuvers as well as the model used

for simulation.

Fig. 6 Output of the two predictors compared to the undelayed output for the case with sampling time,
𝑇s = 0.1 s, total delay 𝜏1 + 𝜏2 = 2 s, noise covariance 𝑾𝑘 , and doublet amplitude of 16◦.

Using the steady-state parameters {𝒙∗, 𝒖∗} given in Section 6, the nonlinear subsystem in Eqn. (24)
was linearized and, subsequently, discretized using the zero-order hold method. It resulted in the following
discrete-time system matrices used in the simulation:

𝑭𝑘 =



0 0 0 0 0 0 1 0 0.0210
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1.0002
0 −9.8078 0 −1.4716 0 0.6209 0 −0.3813 0

9.8078 0 0 0 −0.6358 0 0.6898 0 −17.8358
0 −0.2060 0 −0.9356 0 −6.9233 0 15.6872 0
0 0 0 0 −0.9816 0 −10.1034 0 −0.1587
0 0 0 0.0481 0 −2.3000 0 −8.6962 0
0 0 0 0 1.9710 0 −0.5148 0 −2.1096


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𝑮𝑘 =



0 0 0
0 0 0
0 0 0
0 1.4363 0

3.3231 0 3.8300
0 0 0

−72.0089 0 −1.8301
0 −36.8122 0

0.9633 0 −24.3248



and 𝑯𝑘 = I9×9

(a) RMSE cases {a,b}.i (b) RMSE cases {a,b}.i (c) RMSE cases {a, b}.i

(d) RMSE cases {a,b}.ii (e) RMSE cases {a,b}.ii (f) RMSE cases {a,b}.ii

Fig. 7 Average RMSE values of different predictors with total delay of 2 s, sampling time of 0.1 s. The
captions indicate the doublet amplitudes ({a,b}) and the measurement covariance ({i,ii}) used. For example,
a bar chart labeled “RMSE cases {a,b}.ii” shows the RMSE (averaged over ten simulations) for 2◦ doublets
(“a”) and 16◦ doublets (“b”) with measurement noise covariance 10𝑾𝑘 (“ii”). The specific state variables
and predictor formulations for the given chart are indicated in its x-axis labels.
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