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ABSTRACT

The linear, parameter varying (LPV) modeling and autopilot design for a high-agile surface-to-air
missile is presented. Missile autopilot design poses a challenging task, because a wide flight enve-
lope needs to be covered by the resulting controller while fulfilling robust stability and performance
requirements at the same time. Furthermore, the dynamic behavior of the missile is highly nonlin-
ear and dependent on rapidly changing variables like the Mach number and incidence angle. For
the example of a dual pulse missile presented here relevant changes in mass and center of gravity,
respectively, have an additional large influence on the dynamics. In this paper a quasi-LPV model
is derived, which also takes these influences into account and thus approximates the nonlinear mis-
sile behavior over the entire flight envelope. The choice of scheduling variables is discussed and the
quality of the approximation is examined. Based on the developed quasi-LPV model, an exemplary
LPV autopilot design is presented and the robustness of the closed-loop system is assessed. The
autopilot performance is demonstrated within a high-fidelity simulation environment.

Nomenclature

k, \, q = Euler angles (heading, pitch, roll)
?, @, A = body-fixed angular rates (roll, pitch, yaw)
-,., / = translational force in body-fixed axes (G, H, I)
!, ", # = moment around body-fixed axes (G, H, I)
�() = aerodynamic coefficient
0G , 0H, 0I = body-fixed acceleration (axial, lateral, longitudinal)
U, V = angle of attack/sideslip
o, i = incidence angle/aerodynamic roll angle
) = thrust
< = mass
�GG , �HH, �II = moment of inertia around body-fixed axes (G, H, I)
b, [, Z = virtual aerodynamic control inputs (aileron, elevator, rudder)
+ = absolute velocity
"0 = Mach number
0 = speed of sound
d, @̄ = ambient/dynamic pressure
( = missile reference area
3 = missile reference length
ℎ = altitude
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1 Introduction
Autopilot design for modern high-agile missiles comes with the requirement to cover extended flight

envelopes and increase missile performance. This translates to superior maneuverability, demanding ro-
bust stabilization at high incidences, and great agility. The latter requires fast and accurate tracking of
commanded cross acceleration in the face of highly nonlinear and fast varying missile dynamics. The
main sources for nonlinearities – besides the aerodynamics – are thrust misalignment, uncertainties in
the control effectiveness as well as rapid changes in the missile mass, moments of inertia and center of
gravity. This holds especially true for the example of an agile, dual pulse surface-to-air missile with ex-
tended range, which is considered in this contribution.
Classical autopilot designs implement a gain-scheduling strategy where controllers are synthesized for
linear time-invariant (LTI) representations of the system dynamics, which are obtained from trim calcu-
lations and subsequent linearization of the nonlinear dynamics around the derived points of equilibria.
The controller gains designed at those trim points are typically interpolated based on Mach number and
possibly other physical quantities [1, 2]. Such classical applications have the disadvantage that stability
and performance are only guaranteed in the vicinity of the chosen scheduling points. Nevertheless, ro-
bust control theory for LTI systems has been successfully used for industrial missile applications in the
past. In [3] the robust autopilot design for a highly agile tail/thrust-vector controlled air-to-air missile
is presented, with the single controller outputs being blended based on dynamic pressure. Ref. [4] de-
scribes the extension of the aforementioned autopilot concept to a high-agile tail/thrust vector controlled
surface-to-air missile, where the controllers are designed at certain Mach numbers and scheduled over
altitude. To increase robust stability guarantees, one would need to either increase the parameter uncer-
tainties considered in the autopilot design to enlarge the operating region covered by single controllers,
which would degrade the closed-loop performance. Alternatively, the number of scheduling points could
be increased so that regions of guaranteed robustness are overlapping to a large extent, which can become
a tedious task. Regardless, neither approach changes the basic shortcomings of classical gain scheduling
mentioned above. That is why the area of linear, parameter varying (LPV) control has been receiving a
lot of attention for some time. The state and output equations of an LPV system are given by

¤x = G())x + H())u
y = I ())x + J ())u

(1)

with the state vector x, the inputs u, the outputs y and the parameter vector ) . An LPV system can approx-
imate the nonlinear behavior of a system along the parameter trajectory ) , which is itself a function of
time. For a frozen value of ) an LPV system reduces to a regular LTI one [5]. If a subset of the parameter
vector belongs to the system’s state space the equations (1) describe a quasi-LPV (qLPV) model, which
is a special case of an LPV system [6]. The concept of qLPV models has first been introduced in [7] and
is often encountered in aerospace applications, with the angle of attack U being typically considered as
part of ) in LPV missile models [5, 8]. There are different methods available to derive LPV models from
a nonlinear system model. In [6] three common aproaches are presented, namely state transformation,
function substitution and grid-based Jacobian linearization. Here, the latter will be used to generate a
qLPV model from the nonlinear missile dynamics.
When it comes to controller design the major advantage over classical gain scheduling is that LPV con-
troller synthesis techniques provide explicit stability and performance guarantees in the face of parameter-
varying system dynamics and uncertainties [9]. The basis for LPV autopilot design is the formulation of
control problems as linear matrix inequalities (LMI), which can be solved by readily available algorithms
[10]. The resulting controller Q ()) is thus synthesized in a single step and is itself an LPV system, with
the vector ) assumed to be measurable. That means that the scheduling of the controller is implicitly
performed during the design procedure and comes with robustness guarantees over the considered op-
erating region, which is why LPV controllers are sometimes labeled as self-scheduled controllers [11].
Another advantage is that the LPV controller design framework can be seen as a direct extension of the
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well-known H∞ robust control design techniques [12]. For parameter-varying controller design the per-
formance requirements are specified by the induced L2-norm, which is a generalization of the H∞ norm
[13, 14]. A few years ago the software collection LPVTools has been released, which contains all nec-
essary functions for LPV controller synthesis in MATLAB [10]. The underlying algorithms are based on
the results from [13, 14] and allow for the incorporation of rate bounds on the parameter vector ) , which
can lead to a less conservative design as the controller does not need to fullfill the requirements over an
infinite parameter space.
Here, the LPV modeling and controller design for an agile dual pulse tail controlled surface-to-air mis-
sile is presented. In contrast to other works in this field, where only the endgame phase with a burnt
out missile is considered (see. e.g. [8, 11, 15]), the presented work explicitly considers the change of
dynamics which is mainly due to loss of mass and center of gravity shift. To the author’s knowledge this
is the first work to consider these relevant effects in the design of a missile LPV model and autopilot
design. In section 2 the missile model will be presented and a grid-based quasi-LPV model is derived
and compared to the nonlinear missile’s behavior. In section 3 the design of an LPV controller for the
missile longitudinal axes is described. The robustness of the closed control loop is analyzed in section 4
and nonlinear simulation results are presented. The paper ends with a discussion and outlook on future
works in section 5.

2 Missile Modeling
In this section the quasi-LPV model of the missile dynamics will be derived. First, basic modeling

assumptions will be given and the nonlinear equations of motion of the missile model are presented.
Then, the linearized missile dynamics will be analyzed and the choice for scheduling parameters in the
vector ) is given. Finally, the quality of the derived qLPV model of the missile is assessed by comparison
with open-loop step responses of the nonlinear missile dynamics.

2.1 Nonlinear Missile Model
The nonlinear missile dynamics considered here are described by a 6 degree of freedom (6DOF)

model, mostly following the typical assumptions made for rigid-body aerospace systems which can be
found in [16]. These include the motion over a flat-earth, so that a local north-east-down coordinate
system can be considered as an inertial reference frame (index 8). In addition, the influence of wind is
neglected (\w = 0), causing the kinematic and aerodynamic velocities to coincide and thus eliminating
the need for extra marking of translational and angular velocites. By applying Newton’s second law of
motion to the conservation of mass and angular momentum the missile’s dynamic state equations during
boost, expressed in body-fixed axes (index 1), are given by

¤v1 = 1
<
(L1

A + L1
T + L1

G) − 81
1/8 × v1 (2)

¤81
1/8 = O−1(S1

A + S1
T + S1

J − 81
1/8 × O81

1/8) (3)

with the vector of body-fixed velocity components v1 =

[
D E F

]T
and angular rates of the missile

body relative to the inertial frame 81
1/8 =

[
? @ A

]T
. External forces and moments acting at the center

of gravity (cg) are due to aerodynamics (A), thrust (T), gravity (G) and jet damping (J). The latter effect
is proportional to the mass flow rate and change in inertia and is based on the Coriolis effect through
the burning rocket motor. While (2) is adequate for simulation purpose an alternative formulation of the
translational motion is employed to derive the linearized short-period missile dynamics later on. This
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alternative representation results from evaluating Newton’s second law in aerodynamic axes (index 0)

¤+ =
-0

A + -0
T + -0

G
<

¤V =
. 0

A + . 0
T + . 0

G
<+

+ ? · sin(U) − A · cos(U)

¤U =
/0

A + /0
T + /0

G
<+ cos(V) + @ − tan(V) (? · cos(U) + A · sin(U))

(4)

which leads to a state transformation and the absolute velocity as well as the angle of attack and sideslip

as translational states
[
+ U V

]T
.

The tail controlled missile model is actuated by four fins in cross-configuration and under nominal con-
ditions the missile body has an axisymmetric configuration. Due to this symmetry a skid-to-turn policy
can be utilized and the missile dynamics can be decoupled into separate sets of dynamic equations for
pitch, roll and yawing motion [3]. Furthermore, in practical applications a single autopilot for accelera-
tion tracking is designed, which is identical for the longitudinal and lateral motion. A third controller is
then designed for stabilization of the roll attitude [3]. In the remainder of this paper only the longitudinal
missile motion is considered for qLPV modeling and autopilot design. With ? = A = V = 0 the nonlinear
state equations (3) and (4) can then be written out for the two relevant short-period states U and @

¤U =
@̄((− sin(U) · �X + cos(U) · �Z) − cos(U) · ) + <60I

<+
+ @ (5)

¤@ =
@̄((3�< − ΔGcg�Z) + ( ¤<ΔG2

cg/thrust − ¤�HH) · @
�HH

. (6)

The aerodynamic coefficients are stored in lookup tables and are nonlinear dependent on Mach number
"0, incidence angle o, elevator deflection [, pitch rate @ and change of angle of attack ¤U:

�X = 5 ("0, o, [) , �Z = 5 ("0, o, [) , �m = 5 ("0, o, [, @, ¤U) . (7)

The controlled variable is the longitudinal acceleration at the missile cg 0z,cg, which is the total specific
(non-gravitational) force divided by the missile mass. The measured outputs available for autopilot design
are the angular rates and accelerations from an inertial measurement unit (IMU), resulting in an additional
Euler acceleration term proportional to the lever arm ; between the missile cg and IMU location:

0z,IMU =
/1

A + /1
T

<
+ ; · ¤@ . (8)

2.2 quasi-LPV Missile Model
There are different methods available in the literature to derive qLPV models from a system’s nonlin-

ear description. Although not necessarily providing the best approximation of the underlying nonlinear
dynamics, a grid-based Jacobian linearization approach is the most common, as it can be directly gen-
erated for almost all types of nonlinear systems [6]. Depending on the chosen LPV controller synthesis
approach, the LPV plant model M (B, )) must be given in the form of (1) with the state-space matrices of
M (B, )) being affine functions with respect to the parameter vector ) . This kind of plant model is needed
to derive a linear fractional representation (LFR) or polytopic LPV model. As has been shown in [17]
and [18] the well-known H∞ loop shaping approach from Glover and McFarlane [19] can directly be
extended to polytopic LPV systems. For some systems such affine models can directly be derived from
the nonlinear ones, e.g. by function substitution or state transformation. Examples can be found in [20]
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for a variable stiffness actuator and in [5, 8, 9] for a wide-spread simplified missile model from [21, 22],
which has explicit analytic expressions for the aerodynamic coefficients. For realistic aerospace applica-
tions the aerodynamic coefficients are nonlinear functions of different input variables and typically stored
in numeric, multi-dimensional tables. Then, the most straightforward approach is to define a grid of :
trim points and perform a numerical linearization of the nonlinear model around those trim points. The
resulting grid-based LPV model is then represented by an array of : state-space models

M: (B)
B
=

[
G: H:

I: J:

]
. (9)

In [23] a rigorous approach is presented to generate affine LPV models from a grid-based description
by performing successive steps of physical model analysis, possible simplifications and subsequent mul-
tivariable polynomial fitting. Here, a grid-based qLPV model of the missile is used to design an LPV
controller based on the methods made available by the LPVTools software collection [10].

The linearized short-period dynamics of the missile in general form are given by[
¤U
¤@

]
=

[
/U 1
"U "@

]
·
[
U

@

]
+
[
/[

"[

]
· [


@

0z,cg

0z,IMU

 =


0 1
/̄U 0

/̄U − ; · "U −; · "@

 ·
[
U

@

]
+


0
/̄[

/̄[ − ; · "[

 · [
(10)

with the dimensional derivatives, i.e. the entries of the state-space matrices, being functions of different
trim variables including ”trimmed” mass flow rate during motor burn. An analytic description for (10) has
been derived and reads, e.g., for the derivatives /U and "@ (the index ”0” is used for trimmed variables):

/U =
@̄0(

<0+0
(− sin(U0)�-U,0 − cos(U0)�-,0 + cos(U0)�/U,0 − sin(U0)�/,0) − cos(U0))0 (11)

"@ =
@̄0(3

2

�HH,0+0
(�<@ ,0 + �< ¤U,0) +

¤<0ΔG
2
cg/thrust − ¤�HH,0
�HH,0

. (12)

Prior to defining the parameter vector ) a sensitivity analysis has been performed based on a semi-analytic
linearization approach. A grid of trim points within the missile’s flight envelope has been determined us-
ing MATLAB’s findop command, witch each trim point being defined by a specific Mach number, alti-
tude, angle of attack and burn phase, i.e. mass and cg configuration. Based on the resulting trim variables
the dimensionless aerodynamic derivatives (�<U

, �/U
, . . . ) have been determined for each trim point by

numerical perturbation of multivariabe look-up tables using the linmod command and inserted into the
analytical description of (10), which was previously verified by comparison with numerical lineariza-
tion of the complete short-period dynamics. This way different levels of simplification for the linearized
short-period dynamics �̂: (B) could be evaluated and compared to the nominal system �: (B) in order to
identify certain effects, possibly during boost, which can be neglected. These studies can be considered
as preliminary work for deriving affine model descriptions with minimal complexity. The a-gap metric
has been used as a measure of distance between two systems Xa (�̂: (B), �: (B)) [24]. By evaluating a
fine grid of 5904 trim points it turned out that the effects due to thrust and trimmed axial/longitudinal
force coefficients can be neglected with a maximum of Xa,max = 0.14 over all trim points and a mean of
Xa,mean = 3.64 − 2.
To derive a grid-based qLPV model of the considered dual pulse missile first a choice regarding the

elements of the parameter vector ) =

[
\1, . . . , \?

]T
∈ R? has to be made. This choice is not unique and
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Fig. 1 Dimensional derivatives "U (left) and "[ (right) over incidence angle o and missile mass < for a
fixed sub-sonic Mach number.

strongly depends on the required maneuverability, operational range and model fidelity. In most works
on qLPV missile models scheduling is performed based on (absolute) angle of attack and Mach number
[9, 15] while others also include altitude dependency [11]. As mentioned before, in this work the effects
of relevant changes in mass and center of gravity position, which are unavoidable for a solid-fuel rocket
motor, are also assessed. Here, the Mach number is also used as part of the parameter vector. Due to the
high maneuverability of the missile the incidence angle o is also considered as scheduling parameter with
o ∈ [0, omax]. The choice of o instead of U is legitimate due to the missile’s axisymmetry. Analogous to
the previous analyses the a-gap metric between the elements �: (B) with o = 0 and o = omax has been
determined over the grid of trim points to justify the addition of o to ) . Indeed, with Xa,max = 0.79 and
Xa,mean = 0.69 it implies conservatism if a controller Q: (B) at some grid point would need to robustly
stabilize the missile over the whole incidence range. This is because of the relevant changes of the deriva-
tives "[ and "U in dependency of o which are shown in figure 1 for a fixed sub-sonic Mach number¹.
The influence of the mass on the missile dynamics becomes more clear when looking at figure 2, where
the course of the short period poles ?8 and zeros I8 are shown for <max and <min over Mach number
and for a fixed, low incidence angle. While the absolute values of the zeros are quite similar, the poles

Ma ↑

Re(p)

Im(p)

Ma ↑
Re(z)

Im(z)

Fig. 2 Comparison of short period poles ?8 (left) and zeros I8 (right) for minimum ( ) and maximum
( ) missile mass over Mach number for a fixed, low incidence angle o.

¹for confidentiality reasons all values shown in this paper are normalized to their respective maximum values
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differ greatly. For the start configuration the dynamics are unstable at low Mach numbers, the burnt out
configuration is always stable and has a natural frequency multiple times higher than during start. This
difference is mainly due to the cg shift, which is implicit in the change of mass. When recalling that the
condition "U < 0 is necessary for static stability (see e.g. [16]) it becomes clear that for aft cg positions
where "U is positive the short-period dynamics become unstable. Finally, the question arises whether
both the mass and the center of gravity position should be added as elements of ) , as was done in [25]
for an aircraft model. Due to the direct correlation between mass and cg position for a solid-fuel missile,
the addition of the mass is considered sufficient here. Thus, the parameter vector is given by

) =

[
"0 o <

]
. (13)

Although altitude or respectively air density d could also be added to ) , it is accounted for by proper
scaling of the controller gains as proposed in [26]. This is due to the approximate proportionality of the
short-period dynamics to d. Therefore, the qLPV model is derived at sea level altitude. The parameter
vector ) contains 6 grid points for the Mach number, 7 for the incidence angle and 3 for the mass. For
validation of the qLPV model first frequency responses at a number of grid points have been compared to
those of the original LTI models at those points, showing no difference. Then, frequency responses of the
LPV model between two neighboring grid points have been evaluated and compared to the correspond-
ing LTI models to check consistency of the performed interpolation. Again, the model showed consistent
behavior. Finally, the qLPV model has been compared to the nonlinear dynamics. Figure 3 shows a com-
parison of the longitudinal acceleration 0I,26 and pitch rate @ in response to four equal elevator doublette
commands while burning both motor pulses and passing through the flight envelope. The altitude has
been fixed at sea level. While the transient behavior does not accurately match at the start of the first
pulse, the qLPV model approximates the nonlinear dynamics quite well for the rest of the simulation.
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3 LPV Controller Design
This section describes the synthesis of a robust LPV autopilot for the missile longitudinal dynamics.

After a brief summary of the theoretical background on the L2-induced control framework, the design of
the controller is summarized. This includes a description of the considered design model and the choice
of weighting functions to include robustness and performance requirements.

3.1 Induced L2-norm Controller Design
The setup for LPV controller design can be viewed as an extension to the H∞-framework and is

depicted in figure 4. V(B, )) is the generalized LPV plant with
¤x
z

y

 =


G()) H1()) H2())
I1()) J11()) J12())
I2()) J21()) J22())

︸                                 ︷︷                                 ︸
V(B,))

·

x

w

u

 . (14)

The signals u are the control variables, y the measured variables, w the performance inputs and z per-
formance outputs. Performance specifications for the controller are formulated in terms of the induced
L2-norm which, for a given LPV system M ()), is defined as (see e.g. [10, 27])

| |M ()) | |8,2 = sup
w∈L2,| |w | |2≠0

| |z | |2
| |w | |2

= sup
w∈L2,| |w | |2≠0

| |M ())w | |2
| |w | |2

. (15)

For a fixed parameter vector ) = const the norm coincides with the H∞-norm. The optimization problem
for designing the LPV controller Q (B, )) is given by

min
Q (B,))

| |�; (V(B, )), Q (B, ))) | |8,2 (16)

where �; (., .) describes the lower linear fractional transformation (LFT) shown in figure 4. As in classi-
cal H2/H∞ control the resulting LPV controller has the same number of states as the generalized plant
V(B, )). It includes the LPV plant model as well as the designer-specified weighting functions. The
choice of weighting functions for the missile autopilot is described in the next section.
In contrast to classical gain scheduling, which is limited to systems with slow parameter variation rates
[28], the LPV design framework is also able to take fast varying scheduling parameters, like the inci-
dence angle, into account [27]. If bounded (symmetric) parameter rates | ¤) | < . are incorporated in the
controller design, it is possible to receive less conservative results as for a controller that needs to con-
sider arbitrary fast changes in ) [15]. The function lpvsyn from the LPVTools software package allows
to either synthesize rate-unbounded or rate-bounded LPV controllers [10]. In [27] the underlying LPV

P(s,θ)
w z

K(s,θ)

yu

Fig. 4 Generalized plant V(B, )) for LPV controller design.
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synthesis problem is formulated in terms of the induced L2-norm by applying a generalized version of
the Bounded Real Lemma. In short, it states that an LPV system M (B, )) with ) ∈ P ⊆ R=? and | ¤) | < .
is exponentially stable and | |M ()) | |8,2 < W for all ) ∈ P subject to | ¤) | < . if there exists an ^ ()) > 0
such that 

GT())^ ()) + ^ ())G()) +∑=?

8=1 V8
X^ ())
X\8

^ ())H()) W−1IT())

HT())^ ()) −O W−1JT())
W−1I ()) W−1J ()) −O

 < 0 (17)

where |V8 | ≤ a8, 8 = 1, . . . , =?. As the matrices G()), H()),I ()), J ()) and ^ ()) are continuous func-
tions of the parameter vector ) , the set of linear matrix inequalities (LMIs) in condition (17) is infinite-
dimensional [10]. The approximate solution implemented in lpvsyn is given by solving (17) over a finite
grid for the : trim points from which the qLPV model has been designed. Therefore, a basis for ^ ())
has to be defined with a number of =1 basis functions, such that

^ ()) =
=1∑
9=1

5 9 ())^ 9 . (18)

The basis functions should be chosen in accordance with the plants dependency on ) [15]. In [29] a
comparison showed that for the model of a large flexible aircraft affine basis functions gave the best trade-
off between achievable performance and computational effort. For the rate-unbounded case (. = ∞) the
use of a constant, parameter independent matrix ^ ()) = ^ is sufficient. In summary, for the grid-based
approach, the function lpvsyn needs to solve a total of (: · 2=? + 1) LMIs for W and ^1, . . . , ^=1 [10].

3.2 LPV Missile Autopilot Synthesis
In this section the design procedure for the longitudinal LPV autopilot is described. Figure 5 shows

the interconnection structure of the generalized plant V(B, )) that has been employed for controller syn-
thesis. The design model consists of the second order short-period dynamics (10) which have been aug-
mented with a second order model representing the actuator dynamics with the natural frequency l0 and
damping factor �: [

¤[
¥[

]
=

[
0 1

−l2
0 −2�l0

] [
[

¤[

]
+
[

0
l2

0

]
[cmd . (19)

In addition, to model a time delay in the flight control computer the measured outputs of (10), i.e. the pitch
rate @ and longitudinal acceleration at the accelerometer 0z,IMU, have been delayed by =3 = 2 samples
using a first order Padé approximation as in [26]:

�delay(B) = 4−=3)BB ≈ −=3)BB + 2
=3)BB + 2

. (20)

The LPV controller Q (B, )) has been designed in a (1,2) fashion with acceleration tracking and rate
damping. The resulting controller is of 8th order. Bounds for the parameter variation rates have been
estimated from nonlinear missile simulations and added to the short-period qLPV plant model such that
| ¤"0 | < a1, | ¤o | < a2 and | ¤< | < a3. In total five weighting functions have been added to the generalized
plant in order to implement input/output performance requirements in the design. As with conventional
mixed-sensitivity or signal-based H2/H∞ controller design weighting functions are used to impose re-
quirements on closed-loop bandwidth, robustness, steady-state tracking error etc. [12]. The implemented
weights are described in the following:

• As in [26] the constant weight ,a,cmd has been added to specify the ratio of acceleration tracking
to rate damping loop.
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Fig. 5 Generalized plant for longitudinal LPV controller synthesis.

• The constant weights ,n@ and ,n0 are implemented to include the influence of sensor noise in
the design. Their values have been chosen based on the noise characteristics of the IMU model
implemented in a full 6DoF simulation.

• The weight ,D (B, )) is added to limit actuator bandwidth and thus ensuring robustness against
high frequency disturbances. It is implemented in a first-order high pass structure:

,D (B, )) =
1

"D ())
· B

B + lD ())
. (21)

• The weight ,4 (B, )) has been implemented as a parameter-dependent first order lag-like structure
to specify the steady-state error and closed-loop bandwidth [12]:

,4 (B, )) =
1

"4 ()) B + l4 ())
B + l4 ()) · �4 ())

, �4 ()) < "4 ()) . (22)

Tuning the LPV weights over the parameter grid can be a tedious task, e.g. in [15] an optimization
procedure based on requirements regarding rise time, settling time, overshoot and other metrics has been
introduced. To simplify the design task here the parameters of ,D (B, )) have been chosen to be constant.
The parameters �4 and "4 have also been fixed, representing a bound on steady-state error and peak
sensitivity respectively. Finally, the frequency l4 ()) has been scheduled based on a simple constraint
on the sensitivity bandwidth by limiting it to be a fraction of the non-minimum phase zero of the :-th
grid transfer function �: (B) =

0z,cg (B)
[(B) , which poses a fundamental limitation for achievable closed-loop

performance [12]. This can be interpreted as a surrogate requirement for the closed-loop rise time. The
final values for l4 ()) at each grid point were determined from the respective results from a local H∞
controller design as proposed in [15]. Figure 6 shows the resulting demands for sensitivity bandwidth
lS over Mach number, incidence and missile mass, scaled to the maximum value lS,max which can
be achieved in burnt out state at the maximum Mach number and incidence. The small change over
mass is due to the similar zero locations for <max and <min which have been shown in section 2.2. The
fundamentally different stability properties of the plant generally lead to the demand of a sufficient low
gain of (( 9l) below l4 for unstable cases. Here, the DC gain �4 has been set to 40 dB.
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After some trials the basis functions have been chosen to be affine in the elements of ):

^ ()) = ^1 + "0 · ^2 + o · ^3 + < · ^4 . (23)

The robustness and performance of the LPV controller are assessed in the following section.

4 Robustness and Performance Analysis
In this section robust stability and performance of the closed-loop system is investigated. Linear

analysis techniques are used to assess the robustness properties at selected trim points within the flight
envelope. Finally, the LPV autopilot’s performance is analyzed within a high-fidelity nonlinear simulation
environment.

4.1 Linear Robustness Analysis
To analyze the robustness of the developed LPV controller a `-analysis has been performed at all

126 grid points within the missile’s flight envelope. The design model has been augmented with a di-
agonal parametric uncertainty block, introducing 10% uncertainty for the dimensional derivatives of the
short-period model, as well as 10% uncertainty for the actuator’s natural frequency. This accounts for
variations in the aerodynamics e.g. due to dependencies on the trimmed virtual elevator deflection [ and
inaccuracies in the estimation of the scheduling variables, which are not directly available for measure-
ment. Figure 7 shows the maximum structured singular value over all frequencies at each grip point for
the empty and full missile, respectively. As can be seen the LPV controller robustly stabilizes the empty
missile at each grid point with the maximum value `max = 0.85 occuring at a transonic Mach number
and medium incidence angle. For the full missile, however, there are four grid points for which `max > 1
with the maximum of 1.2 occuring at a similar combination of incidence angle and Mach number as for
the endgame configuration. For both worst-case values of `max the underlying open-loop plant model is
stable. Figure 7 also shows the structured singular values for both of these grid points over the frequency.
As can be seen, the qualitative course of the upper and lower structure singular value is very similar, with
the absolute maximum `max occuring in both cases around 15 rad s−1. Further sensitivity analyses have
shown that the peak `max is primarily caused by the uncertainty in "[ at both grid points.
Practically, the four outliers with `max > 1 don’t pose a problem as they correspond to Mach numbers
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which cannot be reached for the start configuration with maximum mass. For the intermediate mass grid
point the missile is robustly stabilized for all combinations of Mach number and incidence (not shown).

4.2 Nonlinear Simulation Results
The autopilot performance has been assessed by conducting nonlinear simulations. The LPV con-

troller has been implemented in a 6DoF simulation model of the missile with the lateral and roll channel
frozen to evaluate the pure longitudinal motion. The altitude has also been fixed to sea level at which the
qLPV model was derived and the LPV controller has been synthesized. The simulation model includes
the full nonlinear aerodynamics, a motor model, a detailed model of the control section as well as an IMU
model. The latter includes typical sensor dynamics, lever arm effects, i.e. Euler and centripetal accel-
eration due to the IMU being displaced from the cg, and sensor errors. For the performance assessment
the actuators’ natural frequency as well as all aerodynamic coefficients, which consist of a base and a
control increment part, have been varied in the range of ±10%. Control response simulations have been
performed by commanding subsequent acceleration doublette commands to the autopilot while the two
motor pulses are burned and missile velocity changes rapidly. The scheduling parameters are assumed
to be measurable but must be estimated in reality. In total 200 simulations have been performed to in-
vestigate the robustness of the qLPV controller against the considered uncertainties while covering the
whole flight envelope from the start to the endgame configuration. Figure 8 shows the results of the sim-
ulations. The c.g. acceleration of the missile (0z,cg) has been normalized to the commanded acceleration
amplitude while the elevator deflection ([) has been scaled to it’s physical deflection limit. Here, only the
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results from 20 simulations runs are plotted including the worst-case deviations from the nominal track-
ing behaviour. As can be seen, the qLPV autopilot stabilizes the missile robustly over the entire envelope
with good overall tracking behaviour and only slight performance degradation due to uncertainties. The
worst-case overshoot lies in the range of 35% and occurs in a very agile region of the flight envelope, i.e.
at a high Mach number and after the first pulse has burned out.

5 Conclusion and Future Works
In this work a robust LPV autopilot has been designed for the model of a high-agile dual pulse

surface-to-air missile. First, a quasi-LPV model of the missile has been derived with special attention
to the effects of mass reduction and center of gravity shift whose influence on the dynamics turned out
to be very relevant. Second, an LPV controller for longitudinal acceleration tracking has been designed
based on the induced L2-norm control framework. The resulting LPV controller is synthesized over a
grid of trim points for different Mach numbers, incidence angles and missile masses with an a-posteriori
scheduling over air density [26]. Linear robustness analyses were carried out over the grid points of the
flight envelope with the closed control loop showing good robustness to aerodynamic uncertainties. The
autopilot also showed good tracking behavior within a nonlinear high-fidelity simulation environment.
Future work will focus on improving closed-loop performance by employing additional LPV feedforward
control and optimizing LPV weighting functions. It is planned to extend the autopilot by implementing
a full skid-to-turn steering policy. Also, anti-windup measures need to be integrated and the influence of
body-bending dynamics will be assessed.
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