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ABSTRACT

An efficient mission generation and dispatching method was developed for a highly automated

Beyond Visual Line of Sight (BVLOS) drone flight campaign conducted in Saxony, Germany,

involving the aerial photography of numerous agricultural fields. The methodology incorporates a

post-smoothed A* algorithm for path planning to ensure time-efficient routes of up to four tilt-wing

aircraft flying in parallel, while taking into account aircraft specific range limitations and velocity

constraints imposed by the flight geography. The dispatching method is based on a Vehicle Routing

Problem (VRP) formulation and includes the identification of suitable take-off and landing regions

within the flight geography. The proposed system provides a solution for efficient mission planning,

even in flight geographies with variable speed limits, thereby improving the overall operational

effectiveness of BVLOS drone missions.
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Nomenclature

=3 = number of depots

?8 = Position of Node 8

' = Effective flight range

+� = Aerodynamic velocity

+, = Wind speed

+ � = Mean aerodynamic velocity

F8, 9 = Edge cost between Node 8 and 9

G = Solution vector

� = Distance matrix

5 (G) = Objective function

|?8 − ? 9 |2 = Euclidean distance between points 8 and 9
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1 Introduction

Unmanned Aerial Vehicles (UAVs) have witnessed a remarkable proliferation in various fields,

including agriculture and mining [1], support of rescue missions [2], transportation of medical supplies

[3], and inspection of infrastructure [4, 5]. The use of UAVs in these applications has been greatly

facilitated by technological advances, automation, and the development of beyond visual line of sight

(BVLOS) capabilities. In recent years, BVLOS operations have gained considerable attention in the field

of environmental monitoring [6, 7]. These operations have the potential to revolutionize the monitoring

and management of agricultural landscapes by providing timely and high-resolution aerial imagery that

is crucial for optimizing crop yields, resource allocation, and decision-making processes [8].

However, conducting BVLOS drone flights over large regions presents complex challenges related

to mission planning, path optimization, and resource utilization [9]. Agricultural fields are often vast,

covering many square kilometers, and the need for timely data collection over these expansive areas

presents logistical challenges. These operations must account for factors such as varying field sizes,

terrain types, and the location of potential obstructions such as buildings, power lines, and natural

obstacles. In addition, regions with non-uniform velocity limits must be considered, which is crucial in

the flight path generation process to ensure efficient flight missions.

The ability to optimize the total duration of drone missions ensures timely data collection, minimizes

operational costs, and maximizes resource utilization. This is particularly important in scenarios where

multiple drones are involved in parallel flights, as was the case in our drone flight campaign in Saxony,

Germany [8].

The UAVs used in the context of this paper are tilt-wing aircraft [8, 10], which are hybrid UAVs

capable of switching between vertical takeoff and landing (VTOL) and fixed-wing flight modes. This

versatility allows them to cover greater distances efficiently, but it also introduces distinct range and flight

mechanical constraints that must be carefully considered in mission planning [11].

Fig. 1 Points of Interest of the flight campaign. Map data

© OpenStreetMap.

This paper focuses on addressing

these challenges in the context of a

highly automated BVLOS UAV flight

campaign conducted in Saxony, Ger-

many. The flight campaign was con-

ducted in July 2023 with a parallel op-

eration of up to four UAVs and a total

flight distance of more than 10000 km.

The primary objective of this campaign

was the aerial photography of numer-

ous agricultural fields, which required

the efficient generation and dispatch

of flight missions. Fig. 1 shows an

overview of the numerous points of in-

terest of the entire mission. To achieve

this goal, we have developed a method

that uses a post-smoothed variant of the

well-known A* algorithm for path plan-

ning, followed by a variant of the Vehi-

cle Routing Problem (VRP) to generate complete flight missions for the UAVs. This approach ensures

the time-efficient routing of up to four tilt-wing aircraft flying in parallel, taking into account aircraft

specific range limitations and velocity constraints imposed by the flight geography.
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In the following chapters, we will discuss the technical details of our methodology, including the

path-finding algorithm, the method for identifying suitable take-off and landing regions within the flight

geography, and the formulation of the Vehicle Routing Problem (VRP) for mission routing. Finally, we

will present results from the mission generation for the BVLOS flight campaign.

2 Representation of the Flight Geometry

Esri, TomTom, Garmin, Foursquare, FAO, METI/NASA, USGS
 2 mi 

 5 km 

Fig. 2 Exemplary section of the flight campaign’s flight geogra-

phy

The flight geography covers an area

of 13.906 km2 (75% of the total area of

Saxony) and consists of three different

inertial velocity restrictions. Obstacles

such as wind turbines, geofence zones,

power lines, and restricted airspace are

embedded as holes in the polygons

defining the flight geography. The com-

plete flight geography is described by

1,855 polygons with a total of 2,846,559

vertices. Figure 2 shows a section of the

flight geography of the flight campaign.

To reduce the complexity of the

flight geography, we applied a spatial

discretization of the given flight geog-

raphy. The entire area is transformed

into a uniform grid with a grid point

spacing of 50 m. The spacing is chosen

to minimize the overall grid size while ensuring that even the smallest obstacles (e.g., wind turbines)

are reliably represented in the grid. Each grid node also contains the corresponding inertial velocity

constraint at the node’s position in the flight geography. Fig. 3 shows an example of the discretization

method.

Fig. 3 Discretization of the flight geography

In the operating permit of the flight

campaign[12], three different flight areas were

specified, each with different height and velocity

constraints. The green, yellow, and orange colors

indicate regions with different inertial velocity lim-

its. This method increases the memory required

to hold the representation of the flight geography,

but significantly reduces the computational com-

plexity to determine if a given location is outside

the valid flight geography. It also simplifies ob-

taining the velocity limit at that location, since the

model can simply be stored in a two-dimensional

array and locations can be indexed into the array

without any complex geometric computations on

the polygons.

The resulting grid contains approximately

12 million grid points and was pre-computed after obtaining the operational permit, which was tied

to the flight geography application, but without knowledge of the target agricultural points of interest.

In order to use an efficient path-finding algorithm, an implicit graph is formulated using the grid nodes.
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Each grid node represents a node in the graph and is connected to its eight neighbors. The edge cost

describes the average energy consumption of the UAV to move between the nodes, considering the inertial

velocity constraint imposed by the flight geography and an assumed wind. Since the wind is not known

in advance, a conservative assumption is made to avoid underestimating the energy consumption and

thus to avoid generating flight paths that the UAVs are unable to fly. The edge cost between two nodes is

given by Eq. 1:

F8 9 = �
(

+ �

)

|?8 − ? 9 |2 (1)

?8 and ? 9 denote the position of the corresponding nodes. The specific energy consumption � (+) is a

UAV specific function that relates the stationary aerodynamic flight speeds to the energy consumption

per distance flown. The specific energy consumption is expressed in units [J / m]. + � is a conservative

approximation of the maximum mean aerodynamic velocity given an assumed wind speed and a maximum

inertial velocity constraint (Eq. 2).

+ � =
2

1
+�,<0G++,

+ 1
+�,<0G−+,

(2)

Note that edge costs are not explicitly computed and stored for all nodes because there are only a small

number of different possible results:

Due to the connectivity of the nodes and the equal horizontal and vertical spacing, there are two

distinct distances, 50 m distance between horizontally or vertically adjacent nodes and 70.71 m distance for

diagonally adjacent nodes. In addition, depending on the number of different inertial velocity limits, the

number of possible transitions between these different limits when going from one node to a neighboring

node is simply the number of combinations with repetition:

((

=

2

))

=

(

= + 2 − 1

2

)

=

(

= + 1

2

)

=
(= + 1)!

2(= − 1)!
=
=(= + 1)

2
(3)

where = is the number of different inertial velocity limits. In our case, we have a flight geography with

three different values, resulting in 6 possible transitions and, considering two different distances, only

12 possible edge cost values for the whole flight geography. These variants are precomputed and can be

easily identified during the path-finding algorithm, so there is no need to recompute the same values each

time a node is explored during path-finding, while also reducing the memory consumption of the graph

representation.

3 Path-finding Algorithm

Fig. 4 Linking of POIs in the grid

In this paper we use a post-smoothed variant

of the A-Star algorithm [13]. This method involves

two steps: first, the shortest path between a given

start and end point on the graph defined in the

previous section is found using the standard A-Star

algorithm. In a second step, this path is smoothed

using the discrete model of flight geography.

The graph nodes are evenly spaced 50 meters

apart in the north-south and east-west directions.

The destination POIs are not guaranteed to coin-

cide with the grid nodes of the graph. Therefore,

the target POIs are linked to the (up to) eight neigh-

boring nodes in the graph (see Fig. 4).
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The heuristic ℎ(?8), shown in Eq. 4 and used in the A-Star algorithm, is simply given by optimal

specific energy consumption per meter times the Euclidean distance between the position of the current

node and the position of the target node.

ℎ(?8) = �
(

+ �,>?C

)

|?6>0; − ?8 |2 (4)

Fig. 5 Example of the non-smoothed A-Star path-

finding algorithm

Since the range of the UAVs is limited by the

energy of the batteries, we introduced a constraint

on the maximum energy consumption during the

path-finding process to stop the search even if there

is theoretically a path between the start and target

nodes.

Fig. 5 shows an example result of the A-Star

path-finding algorithm. Obviously, the resulting

path is not well suited because it has many unnec-

essary turns resulting from the underlying graph

representation.

The second step of the method attempts to

smooth the resulting path and remove points along

it. This minimizes the number of points defin-

ing the path, while the algorithm ensures that the

smoothed path remains within the flight geogra-

phy. It also ensures that the path segments that

transition from one inertial velocity limit bound-

ary to another do not change. These transition

points are important to ensure the shortest path

property of the flight path.

Fig. 6 discretization of a line-segment using the mod-

ified Bresenhams line algorithm

To verify if a path segment falls within

the flight geography, the Bresenham’s line

algorithm[14] can be employed. However, this ap-

proach, while swift, does not guarantee to find all

intersected cells. This meant it might miss crucial

intersections with the intricate polygons constitut-

ing the original flight geography. To address this,

we utilized a modified algorithm, known as the

Bresenham-based supercover line algorithm[15].

Unlike its predecessor, this enhanced version guar-

antees the inclusion of all intersected squares, en-

suring comprehensive coverage for accurate eval-

uation. Fig. 6 shows an example of the resulting

set of discrete points to approximate a given con-

tinuous line defined by its endpoints. This avoids

the complex mathematical operations that would

be involved in checking the line segments for intersections with the many polygons of the original flight

geography.
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Fig. 7 Example of the post-smoothed A-Star path-

finding algorithm

Fig. 7 shows an example result of the smooth-

ing algorithm. It can be seen that a significant

number of points have been removed, resulting in

a smooth path. Also, no obstacles are touched and

the transition points from one velocity region to

another are preserved.

The path-finding method presented in this sec-

tion was used to calculate all shortest flight paths

between for all pairs of POIs given in the mission.

The paths were stored for later mission generation.

4 Take-off areas for Efficient Mission Routing

In this section, we address the task of selecting optimal take-off and landing areas, henceforth called

"depots", to efficiently cover all locations while minimizing the overall distance traveled. Leveraging the

shortest paths between all POI’s in the previous section, we formulate a mixed-integer linear optimization

problem aimed at strategically placing depots to enhance mission efficiency.

To identify possible depots, the (effective) length of each path between two POIs is converted into a

distance matrix � ∈ R+#×# :

�8 9 = length of path between ?8 and ? 9 (5)

The procedure to identify suitable depots consists of 3 steps:

1) Calculate the minimum number of depots needed to cover all POIs.

2) Select the optimal depots to cover all POIs, while minimizing the sum of all distances between

these POIs and depots.

3) Assign each POI to exactly one depot, minimizing the total distance

Minimum number of depots needed

Define the Solution vector G ∈ {0, 1}# with # being the number of POIs, such that:

G8 =

{

1, if POI8 is selected as a depot

0, otherwise
(6)

6Except where otherwise noted, content of this paper is licensed under
a Creative Commons Attribution 4.0 International License.

The reproduction and distribution with attribution of the entire paper or of individual
pages, in electronic or printed form, including some materials under non-CC-BY 4.0
licenses is hereby granted by the respective copyright owners.



To find the minimum number =3 of depots needed, to cover all locations, a mixed-integer linear opti-

mization problem formulated:

min
G
=3 =

∑

8

G8 (7)

Subject to

�G ≥ 1 (8)

G ∈ {0, 1}# (9)

where

�8, 9 =

{

1, if �8, 9 ≤
'
2

0, otherwise
(10)

The parameter ' in Eq. 10 describes the effective range of the UAVs. The range is restricted to half

of ' because the UAVs must take off and land at the same location.

Selection of optimal depots

Given the minimum number of depots =3 ∈ N found in the previous step, we can now find the

optimal depots to cover all locations, while minimizing the sum of all distances between the POIs and the

depots. We define the solution vector G ∈ {0, 1}# similar to Eq. 6. The mixed-integer linear optimization

problem to find the optimal depots is defined by:

min
G
5 (G) =

∑

8

3∗8 G8 (11)

Subject to

�G ≥ 1 (12)
∑

8

G8 = =3 (13)

G ∈ {0, 1}# (14)

where

�8, 9 =

{

1, if �8, 9 ≤
'
2

0, otherwise
(15)

The term 3∗8 in Eq. 11 is the sum of all distances between locations ? 9 the range of a possible depot ?8:

3∗8 =
∑

9

�8, 9�8, 9 (16)

The equation 13 ensures that the number of locations selected as depots is equal to =3 , which is found in

Sec. 4. The cost function (Eq. 11) penalizes the selection of depots that would result in potentially large

flight missions.

Assignment of POIs to a depot

In the previous step we identified =3 optimal depots, but there are still many cases where a POI is

reachable from more than one depot. Consider the solution vector G ∈ {0.1}=3×# :
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G<= =

{

1, if POI = is assigned to Depot <

0, otherwise
(17)

where =3 is the number of depots found in Sec. 4 and # is the number of POIs. To assign the POIs to

exactly one depot, we can define a constraint to assign each location to exactly one depot:

=3
∑

<=1

G<= = 1 ∀ = ∈ {1, ..., #} (18)

The objective function is defined as follows:

min

#
∑

==1

=3
∑

<=1

G<= · �
′

<= (19)

where �
′

<= is the distance of the shortest path between location = and depot <.

5 Mission Routing

The objective of mission routing is to optimize the utilization of flight time for each drone. This

optimization is crucial for two main reasons: Firstly, manual intervention such as pre-flight checks is

required for takeoff and landing, and secondly, the drones operate on fixed battery capacities. Maximizing

effective flight time reduces the number of necessary turnarounds, thus minimizing overall mission

duration. This optimization involves determining energy-efficient routes between Points of Interest

(POIs) identified using the method outlined in Section 3. This problem falls within the domain of

the Vehicle Routing Problem (VRP) [16], a generalized version of the well-known Traveling Salesman

Problem (TSP) [17]. In the VRP formulation, POIs serve as nodes, and the energy consumption estimates

for the shortest paths between them, derived from the method described in Section 3, determine the edge

costs. Additionally, a range constraint is imposed based on the maximum effective flight range of the

UAVs.

The optimization task of vehicle routing is to find the best flight missions for a fleet of UAVs visiting

all POIs. In our case, “best” means that the total time to fly all missions of a depot is minimized. The total

time is the sum of all flight times and the turnaround time before and after each flight. The turnaround

time consists of mission preparation time, UAV inspection time, and possibly battery charging time.

Therefore, our approach was to minimize the number of flights in order to minimize the turnaround time

and thus maximize the use of the available battery charge per flight. The VRP is solved using OR-Tools

[18], an open source software suite for solving VRP optimization problems.

The mathematical model for the used vehicle routing problem is given by:

Sets and Parameters:

• + = {0, 1, 2, . . . , =}: Set of vertices where 0 represents the depot and 1, 2, . . . , = represent cus-

tomers or other locations.

• � = {(8, 9) : 8, 9 ∈ +, 8 ≠ 9}: Set of arcs representing possible transitions from vertex 8 to vertex 9 .

• 28 9 : Cost of traveling from vertex 8 to vertex 9 , derived from the local distance matrix.

• &: Maximum mission length.

•  : Maximum number of missions.
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Decision Variables:

G:8 9 =

{

1 if mission : includes transition from 8 to 9

0 otherwise
(20)

B: =

{

1 if mission : is used

0 otherwise
(21)

Objective Function:

min

 
∑

:=1

∑

(8, 9)∈�

28 9G
:
8 9 (22)

Constraints:

1) Coverage Constraints: Each POI must be visited exactly once by exactly one mission to achieve

full coverage.

 
∑

:=1

∑

9∈+ :(8, 9)∈�

G:8 9 = 1 ∀8 ∈ + \ {0} (23)

 
∑

:=1

∑

8∈+ :(8, 9)∈�

G:8 9 = 1 ∀8 ∈ + \ {0} (24)

2) Mission Used Constraints: Missions can only contain transitions if they are selected.

1

=

∑

(8, 9)∈�

G:8 9 ≤ B: ∀: (25)

3) Depot Constraints: Every selected mission must include the depot.

∑

9∈+ :(8, 9)∈�

G:0 9 = B
: ∀: (26)

∑

8∈+ :(8, 9)∈�

G:80 = B: ∀: (27)

4) Distance Constraints: The sum of all transition costs in a mission must not exceed the maximum

mission length.
∑

(8, 9)∈�

28 9G
:
8 9 ≤ & ∀: (28)

Figure 8 shows the result of the mission routing of an example depot with 14 POIs (cyan). The start

and landing point is shown in magenta. Four missions are generated for this depot. Table 1 shows the

most important properties of the flight mission for this depot.

The resulting individual flight missions indicate a good use of the available battery capacity. Only

mission no. 1 has a low battery consumption. In addition, mission no. 1 seems to have a high energy

consumption per distance traveled, considering that only one POI is visited in this flight. This is because

a large part of the flight mission passes through the yellow and red zones, which require low inertial

velocity limits and therefore high energy consumption.
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Earthstar Geographics

 1 mi 

 1 km 

Fig. 8 Generated Missions for a depot with 14 POIs

Table 1 Details of the depot shown in Fig. 8

Mission Flight Time [min] Length [m] Energy Consumption [%]

1 32 13996 62.3

2 42 28500 86.6

3 37 21694 98.5

4 45 32357 85.8

6 Results

Fig. 9 Mission path lengths

The mission generation methodol-

ogy presented in this paper was applied

to a real flight campaign in Saxony, Ger-

many. The mission consisted of 3000

POIs. Figure. 10 shows the result of the

mission generation procedure. The de-

pots are shown as bold black dots and

the POIs as smaller gray dots. Similarly

colored routes belong to the same depot.

A total of 494 flight missions were

generated. The 3000 POIs were com-

pletely covered by 115 depots. 63 de-

pots had less than 5 POIs assigned be-

cause the flight geography formed is-
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lands surrounded by no-fly zones around these depots. The remaining 52 depots had an average of 55

POIs assigned. Depot 101 had 252 POIs assigned and was the largest depot.

Fig. 10 Result of the mission generation procedure

The average number of flights required to complete each depot was 9, while the largest depot (101)

required 20 individual flights to visit all 252 POIs. Flight missions had an average flight duration of 40

minutes and an average flight distance of 60 km.

Table 2 Summary of the flight missions

Property Mean Max Min

POIs per depot 26 252 5

Flights per depot 5 35 1

Fligh time in h per depot 4 30,8 2

To illustrate the effectiveness of our mission

routing strategy, Fig. 9 presents the distribution of

path lengths for all flight missions generated during

the campaign. This visualization aids in understand-

ing the variation in mission lengths, highlighting

the efficiency of our path planning and optimization

processes. By analyzing these path lengths, we can

evaluate the balance between mission coverage and

the constraints posed by UAV operational capacities. Table 2 shows a summary of the mission generation

for the flight campaign in Saxony.
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7 Conclusion

In this paper, we present a flight path and mission generation procedure that can be used for automated

aerial photography documentation of agricultural fields. The proposed methodology was applied in a

large-scale BVLOS flight campaign conducted in Saxony, Germany.

The methodology incorporates a post-smoothed A-Star path-finding algorithm that enables efficient

flight path generation while taking into account varying velocity constraints, obstacles such as wind

turbines or power lines, and no-fly zones. Building on the path-finding algorithm, an optimization

problem was formulated to identify optimal locations that serve as efficient take-off and landing points.

These locations were "optimal" in the sense that they minimized the number of locations required and

maximized the number of points of interest that could be reached.

In future work, we plan to extend the proposed methodology by incorporating terrain height profiles

into the path-finding algorithm. The integration of terrain data will provide a more accurate representation

of the flight geography, allowing for a better estimation of the battery charge or energy required to traverse

specific paths. This refinement will be crucial for further optimization of automated mission routing,

especially in regions with significant varying topography. In addition, the next phase of development will

address the transitions between different segments of the flight path. By carefully considering the transi-

tions from one path to another, we aim to improve the overall energy efficiency of flight missions. This

comprehensive approach aims to provide a more realistic assessment of battery requirements throughout

the mission routing.
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