Thrust Model Determination from Operational Flight Data Using a Smart Data Approach

Christoph Deiler

DLR - German Aerospace Center Institute of Flight Systems Department Flight Dynamics and Simulation Braunschweig, Germany

Knowledge for Tomorrow

Background

Sustainable aviation for EU "Flight Path 2050":

- 75% less CO2 emissions
- 90% less NOx emissions
- 65% reduction of perceived noise emission

Short-term solutions:

- better aerodynamic performance and propulsion system efficiency
- further optimization of aircraft operations for emission reduction

DLR's "Low Noise Approach System" (LNAS) targets this goal:

- low power descent and approach by optimized energy management
- up to 25% fuel reduction and noise reduction up to 5 dB(A)
- advisory system based on a high-quality flight performance model
- \rightarrow Application of LNAS on airline fleets for wide field tests

→ Airbus A320neo in SESAR Very Large Demonstration (VLD2) ALBATROSS funding from the SESAR Joint Undertaking under the European Union's Horizon 2020 research and innovation programme under grant agreement No 101017678

Fethi Abdelmoula and Marco Scholz. LNAS - a pilot

Aeronautical Sciences (ICAS).

ICAS2018 0096 paper.pdf

assistance system for low-noise approaches with minimal fuel

https://www.icas.org/ICAS_ARCHIVE/ICAS2018/data/papers/

consumption. Belo Horizonte, Brazil, September 09th - 14th 2018. 31st Congress of the International Council of the

Challenges for Performance Model Determination

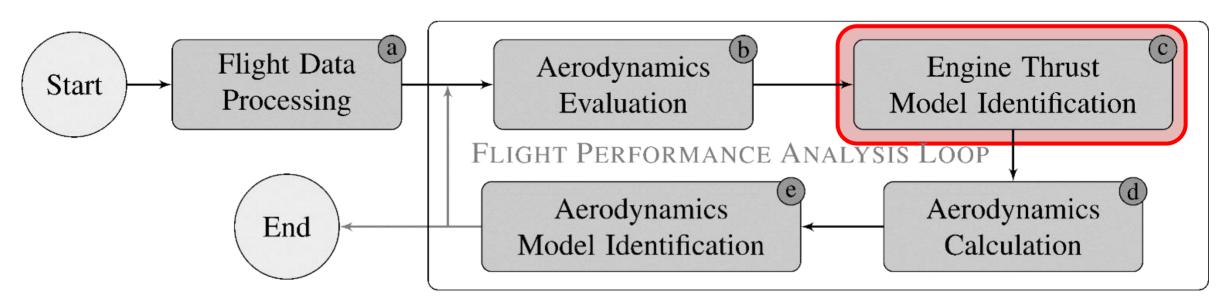
Available information for A320neo:

- flight data recorded on pilots' EFBs during operational flights with A320neo
- basic understanding of A320neo modifications
- a-priori knowledge about A320-232 aerodynamics based on DLR's ATRA

Typical "Big Data Problem":

- · omnipresent and numerous ways of treatment
- desired:
 - \rightarrow solution with minimal effort and useful result (for LNAS)
- required:
 - \rightarrow aircraft performance model with separated aerodynamics and engines
 - \rightarrow reliable model outputs outside the given flight data envelope
- unstructured artificial intelligence methods are not a smart way to solve this problem

→ Fundamental engineering knowledge included in problem solution: Smart Data Approach



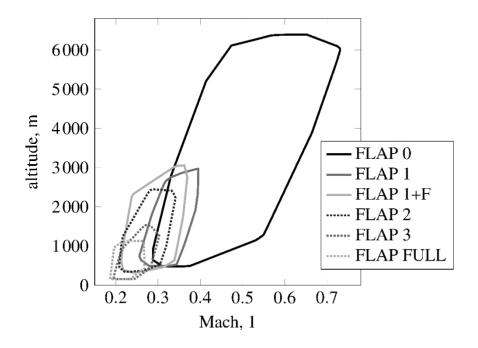
tps://airbus-h.assetsadobe2.com/is/image/content/dam/channel-specific/website-/products-andrvices/aircraft/header/aircraft-families/commercial-aircraftage A320neo.jpg?wid=1920&fit=fit,1&qlt=85,0 (download 2021/Sep/01)

Data Evaluation Process for Flight Performance Model Determination

- Engineering knowledge included in all modules to reduce computational effort and enhance evaluation
- Fundamental assumption: large data base with sufficient variation of specific parameters → decorrelation of aerodynamics and thrust
- Focus on block c) within this work

 \rightarrow further information about process will presumably be given at EuroGNC 2022

Overall process design for execution on state-of-the-art desktop computer



Operational Flight Data Base

Knowledge-based data selection:

- height above ground > 50 ft or barometric altitude > 500 ft
- true airspeed above 130 kts
- fixed flap/slat configuration
- gear not moving

data recordings limited to climb, descent and approach

.....

number of aircraft		3
number of flights		844
number of data points		55 479 606
data envelope	min	max
baro altitude	500 ft	20 964 ft
Mach	0.1866	0.7311
weight	48.57 t	73.44 t

flap/slat configuration	data points
FLAP 0	43 056 406
FLAP 1	1 914 563
FLAP 1+F	1 547 312
FLAP 2	4 514 991
FLAP 3	1 069 383
FLAP FULL	3 376 951

Engine Thrust Characteristics

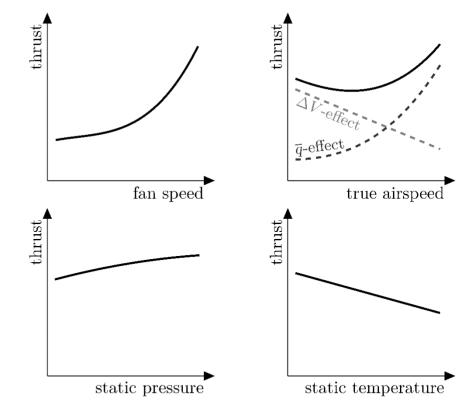
Required thrust calculation for symmetric thrust conditions:

- total req. thrust in aero. system:
- transfer to body-fixed system:
- required thrust per engine:
- regressor definition:
 - engine fan speed N_1
 - Mach number Ma
 - barometric altitude H
 - temperature offset

 \rightarrow net thrust model function:

$$T_{\rm req} \approx T_{\rm net} = f(N_1, Ma, H).$$

 $T_{\text{tot},\mathbf{x},\mathbf{a}} = m_{\text{AC}} \cdot g \cdot n_{\mathbf{x},\mathbf{a}} + C_D \cdot \overline{q} \cdot S.$

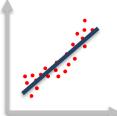

 $T_{\rm req} = 0.5 \cdot \frac{T_{\rm tot,x}}{\cos(\sigma) \cdot \cos(\varepsilon_{xv})}$

 $T_{\text{tot},x} = \frac{T_{\text{tot},x,a}}{\cos(\alpha) \cdot \cos(\beta)}$

anti-ice status	data points	
	all	sym. conditions
off	55 367 617	53 143 789
engine on / wing off	111 989	111 685
engine & wing on	0	0

from aerodynamics model:

a-priori information or updated during process

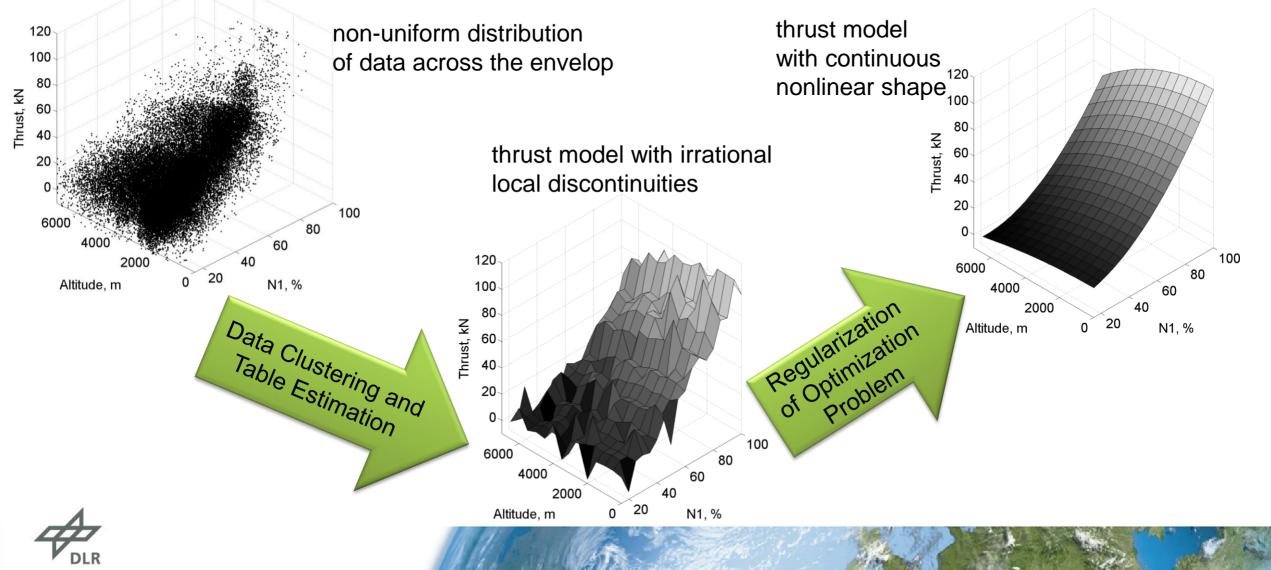


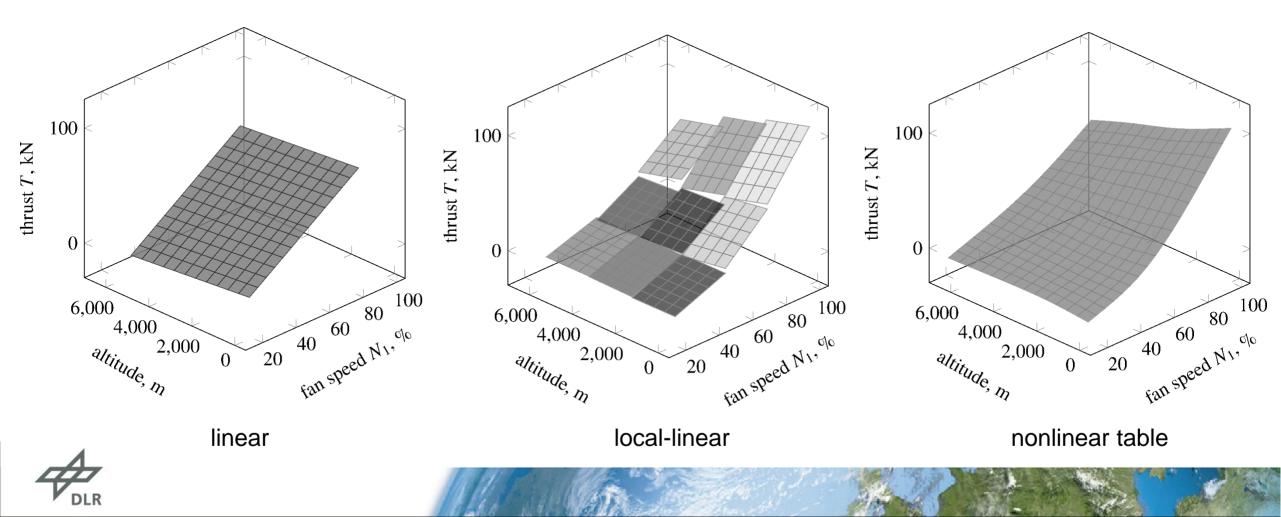
Different Modeling Approaches

- Linear Model:
 - most simplest approach
 - no capability to model the expected nonlinear thrust characteristics

 $T_{\rm net} = \theta_0 + \theta_1 \cdot N_1 + \theta_2 \cdot Ma + \theta_3 \cdot H$

- Local-Linear Model:
 - better approximation of nonlinear thrust characteristics
 - model stitching problem between different linear models for continuous simulation
- Nonlinear Table:
 - full coverage of nonlinear thrust characteristics
 - large estimation problem with given big flight data set \rightarrow *data clustering* to reduce problem size
 - gradient-based Gauss-Newton method to solve estimation problem
 - introduction of regularization for smooth and steady engine thrust representation by penalizing second-order derivatives in the table





Generic Example on Challenges During Nonlinear Thrust Table Estimation The Smart Approach to Solve the Problem with Engineering Knowledge

A Snapshot on the Engine Model Determination Results

Model evaluations for example conditions at Mach = 0.4 (anti-ice off)

Short Summary

- Background of work: flight performance model determination for optimized aircraft operation with LNAS during approach with less emissions and noise
- · Big data problem solved by usage of fundamental engineering knowledge
 - \rightarrow smart data approach
 - \rightarrow thrust model determination part of a flight data evaluation process
- Evaluation of different thrust model structures
 - \rightarrow nonlinear thrust table best choice
 - \rightarrow table estimation process relatively fast even with large data base
- More detailed presentation on thrust model determination proposed for EuroGNC 2022!

Contact

Christoph Deiler christoph.deiler@dlr.de

DLR - German Aerospace Center

Institute of Flight Systems Department Flight Dynamics and Simulation Braunschweig, Germany

