The Virtual Flight Test Environment –
A Web-Based Framework for
Realistic Testing of Flight Control Laws

Janik Hopf
AlphaLink Engineering GmbH
Challenges in the Operation of UAS

Worldwide Market Growth for Commercial UAVs

- UAS sold (in thousands)
- Source: Tractia

A Growing Market needs Professionalisation

- Airspace Integration
- Safe UAS-Systems
- Safe and Reliable Flight Control Law Software
- Intensive Testing
- Professional and practise-oriented teaching
- Quick transfer from research to application

Test Center for Unmanned Aircraft Systems

Source: DLR

Virtual Flight Test Environment

Our Vision

Our State of the Art

Source: DLR
Performing of Flight Tests exclusively in the Web Browser

- Virtual flight test environment is a flight simulation that only requires a web browser
- No further software is necessary
- Control is possible with joystick or keyboard
- It can be flown without control law, with predefined control law structures or with own flight control laws

Concept of the Virtual Flight Test Environment

- Webbrowser to interpret JavaScript and HTML
- HTML + JavaScript: A "software" that takes over all tasks
- Visualisation: Aircraft and Environment
 - WebGL: Display + Google Maps API
- Simulation model
 - Background: Simulink Model
 - Transformation of the Simulink model into JavaScript
- Aircraft Control
 - Rudder, thrust and flight control unit
Usable UAS in the Virtual Flight Test Environment

Digital Twin of the Flying Lab

- Flying Lab is used by universities in teaching and research for experiments in flight dynamics and flight control
- Implementation of Simulink controllers on the real flight test vehicle without writing a line of code
- Controllers designed in the virtual flight test environment can be flown directly on the real aircraft with the same performance

Other implementable UAS & Environment

- In principle, any aircraft, e.g. copter, can be integrated into the virtual flight test environment
- In addition to a generic world (low performance required), the landscape of the waterbridge in Magdeburg is available as an environment.
- Further environments are planned
::: Process Chain and Application Examples

Process Chain for Development and Testing of FCL-Software

Aircraft Model
- Flying Lab
- Any other UAS

Linear Models
- State-Space Model of the Flying Lab is downloadable

Control Laws
- Predefined
- Custom FCL

VFTE

Real Flight Test

Application Examples

1. Design of a controller for a predefined control-loop structure (Bank Angle Control Law)

2. Implementation of a custom control law in the Virtual Flight Test Environment

3. Download of the controller and validation with the Hardware-in-the-Loop Simulator and in real flight tests
Example 1: Design of a Controller for a Predefined Control Law Structure

How to use the Virtual Flight Test Environment

This video explains the interaction with the virtual flight test environment. It shows how to set up your joystick and how to access the flight test data.
Example 2: Implementation of a custom Control Law in the Virtual Flight Test Environment
Example 3: Download of the Controller and Implementation on the UAS

[Image of Virtual Flight Test Environment]

Lesson 12 - Full Autopilot

Explanation:
This control law allows fully automatic flight. The course, altitude, and airspeed are set via the Flight Control Unit. The control law combines the previously designed controllers, thereby allowing to use the tuned parameters from the previous lessons.

This document lists all variables saved in the Excel sheet of this lesson.
Current Users and Invitation to test the Web Environment

Current Users

Germany
- Technische Universität Berlin
- Technische Hochschule Wildau
- TU Hamburg
- TU Chemnitz
- Hochschule Karlsruhe
- Universität Rostock
- Deutsches Zentrum für Luft- und Raumfahrt
- Private users

International
- Brazil
- Bulgaria
- Chile
- Columbia
- Great Britain
- USA

Join the Network

Register today: www.alphalink-vfte.com

Promotion Code: eurognc_2021

Test all functionalities of the VFTE one week (until 14.10.2021)
Summary and Suggestions for Discussion

Summary

- The virtual flight test environment can be used for engineering education, where students are faced with real flight test problems (noise, bias)
- Scientists can implement their own new control concepts and test them before the flight test
- Due to the equivalence between model and real flight and system behavior, intensive testing is possible prior to the real-world flight test
- With the connection to the hardware-in-the-loop simulator, the flight control law software can be securely and intensively tested for error cases (e.g. sensor error) before the flight test

Questions for the audience

- As a user, what other functionalities would you like to see?
- Do you have any suggestions for the current state?
- What do you think about a networked version of the virtual flight test environment? Can you imagine testing your guidance, navigation and control solutions virtually with other users/researchers?
Janik Hopf, Flight Control Engineer
AlphaLink Engineering GmbH
Bismarckstraße 10-12
10625 Berlin
Email: janik.hopf@alphalink.aero
Web: www.alphalink.aero
Dr. Daniel Cracau (CEO) Paul Worrmann (Engineering)
Dr. Alexander Köthe (CTO) Richard Reinfeld (Engineering)
Leon Diab (Product Design)
Mentor of AlphaLink: Prof. Dr.-Ing. Robert Luckner