Impact Vector Guidance

Dr. Raziye Tekin
Roketsan Inc.

Impact Angle \& Impact Vector

As their names imply, the objective of 2D methods is to achieve a specified impact angle whereas 3D methods aim to obtain a specified impact vector in space.

Target Sets

$>$ Stationary
$>$ Moving
$>$ Maneuvering

State of the Art

```
    Impact Angle
> Biased PN
>Lyapunov
```

Impact Angles in 3D
$>$ GENEX
>Control Theory Based Methods

```
>Sliding Mode
>SDRE
>NDI
```


Structure

```
>Effective Pure PN (EPPN) >Effective Pure PN
Closed Form Solution of EPPN
Comparison of EPPN & PPN
                                    >Bias Vector
>Guidance Design
>Trajectory Shaping in 2D
 Trajectory Shaping in 3D
Simulations
```


Effective Pure PN

Closed Form Solution of Effective Pure PN

As in the case of PPN, whose solution against a moving target is in the form of infinite series, but it is straightforward against a stationary target.

Comparison of EPPN \& PPN

The acceleration is normalized as

EPPN

$\alpha=\frac{N}{\sin \varepsilon_{i}} \frac{\sin \varepsilon \cos \varepsilon}{\rho}$

PPN

$$
\alpha=\frac{N}{\sin \varepsilon_{i}} \frac{\sin \varepsilon}{\rho}
$$

The values of the total control efforts normalized with respect to of PPN with $N=3$:

$$
J=\left(\int \alpha^{2} \mathrm{~d} \rho\right) /\left(\left.\int \alpha^{2} \mathrm{~d} \rho\right|_{N=3} ^{\mathrm{PNN}}\right)
$$

Effective Pure PN

Guidance Design

vertical separation between missile and target

$$
v_{c}=v-v_{T}
$$

horizantal separation between missile and target

$$
\dot{\lambda}=-\frac{\dot{y}}{v_{c}\left(t_{f}-t\right)}-\frac{y}{v_{c}\left(t_{f}-t\right)^{2}}
$$

$$
\hat{\gamma}=\frac{\dot{y}}{v_{c}}
$$

relative flight path angle

$$
\dot{\hat{\gamma}}=N \dot{\lambda}+b
$$

$$
\ddot{y}=a=v_{c}(N \dot{\lambda}+b)
$$

Guidance Design

$$
\dot{\hat{\gamma}}=N \dot{\lambda}+b \quad \text { constant bias term }
$$

$$
\lambda_{f}=\hat{\gamma}_{f}
$$

$$
b_{r}=\dot{\lambda}+(N-1) \frac{\lambda-\lambda_{f}}{t_{f}-t}
$$

r indicates that the angle error is formulated with respect to the LOS.

$$
b=\frac{\hat{\gamma}_{f}-\hat{\gamma}-N\left(\lambda_{f}-\lambda\right)}{t_{f}-t}
$$

$$
b_{v}=N \dot{\lambda}+(N-1) \frac{\hat{\gamma}-\hat{\gamma}_{f}}{t_{f}-t}
$$

v indicates that it is formulated with respect to the velocity.

This fact might render this equation useless when the flightpath angle, rather than the relative one, is to have a desired final value against a moving target.

$$
b_{v}=N \dot{\lambda}+(N-1) \frac{\gamma-\gamma_{f}}{t_{f}-t}
$$

Trajectory Shaping in Two Dimensions

EPPN-based IA guidance laws

$$
\dot{\gamma}_{r}=\frac{v_{c}}{v}\left\{(N+1) \dot{\lambda}+(N-1) \frac{v_{c}}{r}\left(\lambda-\lambda_{f}\right)\right\}
$$

$$
t_{f}-t=t_{\mathrm{go}} \approx-\frac{r}{\dot{r}}=\frac{r}{v_{c}}
$$

$$
\dot{\gamma}_{v}=\frac{v_{c}}{v}\left\{2 N \dot{\lambda}+(N-1) \frac{v_{c}}{r}\left(\gamma-\gamma_{f}\right)\right\}
$$

It is also possible to have their PPN-based counterparts. However, these are left out because their trajectoryshaping performances happen to be rather poor in comparison with these guidance formulations.

Trajectory Shaping in Two Dimensions

Trajectory Shaping in Three Dimensions

$>$ The objective is to guide the missile in such a way that either the LOS vector \boldsymbol{r} (with its unit vector \boldsymbol{u}_{r}) or the velocity vector \boldsymbol{v} (with its unit vector \boldsymbol{u}_{v}) points in the same direction as \boldsymbol{u}_{f} at the time of impact.
$>$ The desired impact vector \boldsymbol{u}_{f} may be defined in an observation frame \mathcal{F}_{o} with axes $\boldsymbol{u}_{1,2,3}^{(o)}$ in terms of the yaw angle ψ_{f} and the pitch angle θ_{f}

$$
\bar{u}_{f}^{(o)}=\left[\begin{array}{c}
\cos \psi_{f} \cos \theta_{f} \\
\cos \theta_{f} \sin \psi_{f} \\
-\sin \theta_{f}
\end{array}\right]
$$

Trajectory Shaping in Three Dimensions

Ultimate objective is to rotate \boldsymbol{u} onto \boldsymbol{u}_{f}
the direction of the bias term $\boldsymbol{u}_{b}=\frac{\boldsymbol{u}_{f} \times \boldsymbol{u}}{\left|\boldsymbol{u}_{f} \times \boldsymbol{u}\right|}$

$$
\boldsymbol{a}_{P P N}=N \boldsymbol{\omega}_{r} \times \boldsymbol{v}
$$

$$
\delta=\cos ^{-1}\left(\boldsymbol{u}_{f} \cdot \mathbf{u}\right)
$$

$$
\boldsymbol{\omega}_{r}=\frac{\boldsymbol{r} \times \dot{\boldsymbol{r}}}{r^{2}}
$$

Trajectory Shaping in Three Dimensions

EPPN-based Impact Vector Guidance

$$
\begin{aligned}
& \boldsymbol{a}_{\mathrm{IVG}-r}=v_{c}\left\{(N+1) \boldsymbol{\omega}_{r}+(N-1) \frac{v_{c}}{r} \cos ^{-1}\left(\boldsymbol{u}_{f} \cdot \boldsymbol{u}_{r}\right) \frac{\boldsymbol{u}_{f} \times \boldsymbol{u}_{r}}{\left|\boldsymbol{u}_{f} \times \boldsymbol{u}_{r}\right|}\right\} \times \boldsymbol{u}_{v} \\
& \boldsymbol{a}_{\mathrm{IVG}-v}=v_{c}\left\{2 N \boldsymbol{\omega}_{r}+(N-1) \frac{v_{c}}{r} \cos ^{-1}\left(\boldsymbol{u}_{f} \cdot \boldsymbol{u}_{v}\right) \frac{\boldsymbol{u}_{f} \times \boldsymbol{u}_{v}}{\left|\boldsymbol{u}_{f} \times \boldsymbol{u}_{v}\right|}\right\} \times \boldsymbol{u}_{v} \\
& \boldsymbol{a}_{\mathrm{GENEX}}=\frac{v^{2}}{r}\left\{(n+2)(n+3)\left[\boldsymbol{u}_{r}-\left(\boldsymbol{u}_{v} \cdot \boldsymbol{u}_{r}\right) \boldsymbol{u}_{v}\right]-(n+1)(n+2)\left[\boldsymbol{u}_{f}-\left(\boldsymbol{u}_{v} \cdot \boldsymbol{u}_{f}\right) \boldsymbol{u}_{v}\right]\right\}
\end{aligned}
$$

Trajectory Shaping in Three Dimensions

Simulation results against stationary target

Yaw Impact Angle	Guidance Law	Max. Acc., $\mathrm{m} / \mathrm{s}^{2}$	Total Control Effort, $\mathrm{m}^{2} / \mathrm{s}^{3}$
-30°	IVG-r	11.7	2330
	IVG-v	14.7	2365
	GENEX $(n=0)$	17.3.	2436
120°	IVG-r	31.7	8329
	IVG-v	37.5	9179
	GENEX $(n=1)$	67.4	11135

The missile is released horizontally from an altitude of 5 km with $300 \mathrm{~m} / \mathrm{s}$ with a yaw angle of 30°
Target is at 10 km
The pitch angle of the desired impact vector is selected as $\theta_{f}=-60^{\circ}$ and yaw angle either $\psi_{f}=-30^{\circ}$ or $\psi_{f}=120^{\circ}$ $\mathrm{N}=4$

Moving/Maneuvering Targets/ Speed Change

$>$ The target is moving with a constant speed of $50 \mathrm{~m} / \mathrm{s}$ and is capable of maneuvering with $5 \mathrm{~m} / \mathrm{s}^{2}$.
$>$ There is gravity present, the deceleration due to drag is modeled as $-7 \times 10-5 v^{2}$.
> The autopilot is represented by a first-order lag of 0.3 s on acceleration response.
> The guidance command is held constant during the last 50 m to emulate a saturated seeker.

Summary of simulation results against moving target			
		Maximum	Total control effort, $\mathrm{m}^{2} / \mathrm{s}^{3}$
Yaw impact angle	Guidance law		
-30°	IVG-r	8.8	728
	IVG-v	9.4	762
120°	IVG-r	27.9	5219
	IVG-v	34.4	5091
	IVG-ration, $\mathrm{m} / \mathrm{s}^{\mathrm{a}}$	43.9	4938

Moving/Maneuvering Targets/ Speed Change

Moving/Maneuvering Targets/ Speed Change

Impact Vector Guidance

$>$ Two new guidance laws in 3D vector form to control the final impact direction are proposed.
$>$ The effective pure PN constructs the acceleration command using the closing speed instead of the missile speed.
$>$ The guidance laws are in essence 3D implementations of biased PN, they involve a unit vector to determine the bias direction.
$>$ Either the LOS or the velocity vector rotates about this unit vector to reach the desired impact vector eventually.
$>$ The proposed guidance laws can be used against stationary, moving, and maneuvering targets.
Thank you.

