${ }^{[1]}$ ISL - French-German Research Institute of Saint-Louis
${ }^{[2]}$ University Grenoble Alpes, Grenoble INP, GIPSA-lab

Flight Dynamics Modeling for Long-Range Guided Projectiles (LRGP)

Gian Marco VINCO ${ }^{[1][2]}$
$7^{\text {th }}$ October 2021

Supervisors

Prof. Olivier SENAME ${ }^{[2]}$
Dr. Spilios THEODOULIS ${ }^{[1]}$

A joint initiative of

퐆I.

Static aerodynamic characterization, and derivation of a new aerodynamics model for the LRGP concept.

Figure 1.
LRGP concept: emphasis on the aerodynamic surfaces.

The static characterization of the projectile aerodynamics was performed by means of Computational Fluid Dynamics (CFD) software simulations.

The static measurements were provided in the form of aerodynamic forces ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}$) and moments ($\mathrm{L}, \mathrm{M}, \mathrm{N}$), coherent with the body reference system of coordinates (B), as in Figure 2.

These measurements were normalized with respect to the dimensions of the projectile and expressed as non-dimensional static coefficients
$\left(C_{X_{s}}, C_{Y_{s}}, C_{Z_{s}}\right)$ and ($\left.C_{l_{s}}, C_{m_{s}}, C_{n_{s}}\right)$, respectively.
Each coefficient was first measured in accordance with a polar system of coordinates, as a function of the Mach number (M), the roll angle (ϕ^{\prime}) and the total angle-of-attack (α^{\prime}), more suitable for the CFD software.

Then, the measurements were converted to the Cartesian system of coordinates, as a function of the angle-of-attack (α) and angle-ofsideslip (β), more suitable for modeling and control design purposes.

Polar Coordinates

Cartesian Coordinates

$$
\left\{\begin{array} { l }
{ \alpha ^ { \prime } = \operatorname { a r c c o s } (\operatorname { c o s } \alpha \operatorname { c o s } \beta) } \\
{ \phi ^ { \prime } = \operatorname { a r c t a n } (\frac { \operatorname { t a n } \beta } { \operatorname { s i n } \alpha }) }
\end{array} \quad \left\{\begin{array}{l}
\alpha=\arctan \left(\tan \alpha^{\prime} \cos \phi^{\prime}\right) \\
\beta=\arcsin \left(\sin \alpha^{\prime} \sin \phi^{\prime}\right)
\end{array}\right.\right.
$$

[^0]For each Mach value in the range [$M_{\min }, \ldots, M_{\text {max }}$], a roll angle ϕ^{\prime} was selected [$0, \ldots, 90$] [deg]. Then, the data were acquired by varying the total angle-of-attack in the range $\left[0, \ldots, \alpha_{\text {max }}^{\prime}\right][$ deg].

Figure 3. CFD Measurements acquisition procedure.
As in Equation 1, if $\phi^{\prime}=0$ [deg], then $\alpha^{\prime}=\alpha$; if $\phi^{\prime}=90$ [deg], then $\alpha^{\prime}=\beta$. Thus, the converted aerodynamic measurements are expressed as a function of either α or β (Reduced CFD dataset).

For intermediate values of the roll angle, the converted aerodynamic measurements are expressed as a function of the simultaneous variation of the angles α and β (Full CFD dataset).

	Simple Linear Regression	Multivariable Regression		
CFD				
dataset			\quad	Reduced set of CFD
:---				
measurements neglecting				
the simultaneous				
variations of multiple				
variables.	\quad	Full set of CFD		
:---				
measurements modeling				
the combined effects				
generated by the variations				
of α and β.				

Table 1. Regression approaches comparison chart.

NB: All the presented data have been rescaled for confidentiality reasons.
${ }^{[1]}$ Zipfel, P. (2014). Modeling and simulation of aerospace vehicle dynamics. American Institute of Aeronautics and Astronautics.

Based on the standard polynomial regression approach, and on the least-squares optimization.

Several polynomial functions of increasing odd or even order were investigated for each coefficient regression, modeling the variation of either α or β.

The model accuracy was assessed in terms of the Sum of Squared Errors (SSE), Coefficient of Determination (R^{2}), Root Mean Squared Error (RMSE), statistical coefficients, as shown in Figure 4.

Figure 5. Resulting regression surfaces: longitudinal (a) and lateral (b) forces.

$$
\begin{aligned}
& \left\{\begin{array}{l}
C_{\mathrm{X}_{\mathrm{s}}}(M, \alpha)=C_{\mathrm{X}_{\alpha 0}}(M)+C_{\mathrm{X}_{\alpha 2}}(M) \sin ^{2} \alpha \\
C_{\mathrm{X}_{\mathrm{s}}}(M, \alpha)=C_{\mathrm{X}_{\alpha 0}}(M)+C_{\mathrm{X}_{\alpha 2}}(M) \sin ^{2} \alpha+C_{\mathrm{X}_{\alpha 4}}(M) \sin ^{4} \alpha+\ldots
\end{array}\right. \\
& \left\{\begin{array}{l}
C_{\mathrm{Y}_{\mathrm{s}}}(M, \beta)=C_{\mathrm{Y}_{\beta 1}}(M) \sin \beta \\
C_{\mathrm{Y}_{\mathrm{s}}}(M, \beta)=C_{\mathrm{Y}_{\beta 1}}(M) \sin \beta+C_{\mathrm{Y}_{\beta 1}}(M) \sin ^{3} \beta+\ldots
\end{array}\right.
\end{aligned}
$$

Equation 2. Polynomial regression functions examples.

Figure 4. Regression accuracy analysis: RMSE, R^{2}, and SSE, respectively for the longitudinal ((a),(b),(c)) and the lateral ((d),(e),(e)) forces.

NB: All the presented data have been rescaled for confidentiality reasons.

	Polynomial Order	SSE	R^{2}	RMSE
$C_{\mathrm{X}_{\alpha}}(M, \alpha)$	$2^{\text {nd }}$	$0.4 \cdot 10^{-3}$	85%	$0.7 \cdot 10^{-2}$
$C_{\mathrm{Y}_{\alpha}}(M, \alpha)$	$4^{\text {th }}$	$0.1 \cdot 10^{-3}$	98%	$0.3 \cdot 10^{-2}$
$C_{\mathrm{Z}_{\alpha}}(M, \alpha)$	$3^{\text {rd }}$	$0.2 \cdot 10^{-5}$	75%	$0.4 \cdot 10^{-3}$
$C^{\text {th }}$	$0.1 \cdot 10^{-6}$	98%	$0.1 \cdot 10^{-3}$	
1 $_{1_{\alpha}}(M, \alpha)$	$3^{\text {st }}$	$0.5 \cdot 10^{-4}$	99%	$0.2 \cdot 10^{-1}$
$C_{\mathrm{m}_{\alpha}}(M, \alpha)$	$3^{\text {rd }}$	$0.4 \cdot 10^{-4}$	99%	$0.2 \cdot 10^{-1}$
$C_{\mathrm{n}_{\alpha}}(M, \alpha)$	$5^{\text {th }}$	$0.6 \cdot 10^{-6}$	50%	$0.3 \cdot 10^{-3}$
	$3^{\text {rd }}$	$0.3 \cdot 10^{-6}$	70%	$0.3 \cdot 10^{-3}$

Table 2. Accuracy results related to the α coefficient derivatives.

Only the relevant coefficient derivatives are included in the final model, while minor terms are neglected. The roll coefficient $C_{l_{s}}$ is ignored in the model since both the derivatives are negligible.

	Polynomial Order	SSE	R^{2}	RMSE
$C_{\mathrm{X}_{\beta}}(M, \beta)$	$\begin{aligned} & 2^{\text {nd }} \\ & 4^{\text {th }} \end{aligned}$	$\begin{aligned} & 0.9 \cdot 10^{-3} \\ & 0.1 \cdot 10^{-3} \end{aligned}$	$\begin{aligned} & 80 \% \\ & 99 \% \end{aligned}$	$\begin{aligned} & 0.1 \cdot 10^{-1} \\ & 0.4 \cdot 10^{-2} \end{aligned}$
$C_{Y_{\beta}}(M, \beta)$	$\begin{aligned} & 1^{\text {st }} \\ & 3^{\text {rd }} \end{aligned}$	$\begin{aligned} & 0.2 \cdot 10^{-1} \\ & 0.4 \cdot 10^{-2} \end{aligned}$	$\begin{aligned} & 99 \% \\ & 99 \% \end{aligned}$	$\begin{aligned} & 0.4 \cdot 10^{-1} \\ & 0.2 \cdot 10^{-1} \end{aligned}$
$C_{\mathrm{Z}_{\beta}}(M, \beta)$	$\begin{aligned} & 1^{\text {st }} \\ & 3^{\mathrm{rd}} \end{aligned}$	$\begin{aligned} & 0.4 \cdot 10^{-6} \\ & 0.1 \cdot 10^{-6} \end{aligned}$	$\begin{aligned} & 50 \% \\ & 87 \% \end{aligned}$	$\begin{aligned} & 0.2 \cdot 10^{-3} \\ & 0.1 \cdot 10^{-3} \end{aligned}$
$C_{1_{\beta}}(M, \beta)$	$\begin{aligned} & 3^{\text {rd }} \\ & 5^{\text {th }} \end{aligned}$	$\begin{aligned} & 0.9 \cdot 10^{-7} \\ & 0.6 \cdot 10^{-7} \end{aligned}$	$\begin{aligned} & 60 \% \\ & 70 \% \end{aligned}$	$\begin{aligned} & 0.1 \cdot 10^{-3} \\ & 0.9 \cdot 10^{-4} \end{aligned}$
$C_{\mathrm{m}_{\beta}}(M, \beta)$	$\begin{aligned} & 1^{\text {st }} \\ & 3^{\mathrm{rd}} \end{aligned}$	$\begin{aligned} & 0.2 \cdot 10^{-5} \\ & 0.1 \cdot 10^{-5} \end{aligned}$	$\begin{aligned} & 50 \% \\ & 70 \% \end{aligned}$	$\begin{aligned} & 0.5 \cdot 10^{-3} \\ & 0.4 \cdot 10^{-3} \end{aligned}$
$C_{\mathrm{n}_{\beta}}(M, \beta)$	$\begin{aligned} & 1^{\text {st }} \\ & 3^{\text {rd }} \end{aligned}$	$\begin{aligned} & 0.5 \cdot 10^{-1} \\ & 0.2 \cdot 10^{-1} \end{aligned}$	$\begin{aligned} & 98 \% \\ & 99 \% \end{aligned}$	$\begin{aligned} & 0.8 \cdot 10^{-1} \\ & 0.4 \cdot 10^{-1} \end{aligned}$

Table 3. Accuracy results related to the β coefficient derivatives.

Equation 3. Full Simple Linear Regression model.

Based on a Multivariable Regression approach, aiming to model the coupled effects generated by the simultaneous α and β variations.

Several multivariable functions were investigated: for each coefficient, a Test function, a Formula function, and an Independent function were considered.

The model accuracy was assessed in terms of the Sum of Squared Errors (SSE), Coefficient of Determination (R^{2}), Root Mean Squared Error (RMSE), statistical coefficients, as shown in Figure 6.

Figure 7. Resulting regression surfaces: longitudinal (a) and vertical (b) forces.

Test: selected as the most accurate model among a large set of trial functions, aiming to best fit the CFD data.
Formula: based on flight mechanics theoretical derivations ${ }^{[1]}$.
Independent: assuming each individual regression
parameter to be a function of either α or β.

(a)

Figure 6. Regression accuracy analysis: RMSE, R^{2}, and SSE, respectively for the longitudinal ((a),(b),(c)) and the vertical ((d),(e),(f)) forces.

Because of the coherency with the flight mechanics formulation, and the results obtained in terms of model accuracy, the Formula model was employed for the final comparison.

As observed for the Simple Linear Regression, the roll coefficient $C_{\mathrm{l}_{\mathrm{s}}}$ derivatives are negligible, thus it is ignored in the model.

$$
\left\{\begin{array}{l}
C_{\mathrm{X}_{\mathrm{s}}}(M, \alpha, \beta)=C_{\mathrm{X}_{0}}(M)+C_{\mathrm{X}_{2}}(M) \cos \alpha \cos \beta+C_{\mathrm{X}_{4}}(M) \cos ^{2} \alpha \cos ^{2} \beta \\
C_{\mathrm{Y}_{\mathrm{s}}}(M, \alpha, \beta)=C_{\mathrm{Y}_{2}}(M) \sin \beta \cos \alpha \\
C_{\mathrm{Z}_{\mathrm{s}}}(M, \alpha, \beta)=C_{\mathrm{Z}_{2}}(M) \sin \alpha \cos \beta \\
C_{\mathrm{m}_{\mathrm{s}}}(M, \alpha, \beta)=C_{\mathrm{m}_{2}}(M) \sin \alpha \cos \beta+C_{\mathrm{m}_{4}}(M) \sin \alpha \cos \alpha \cos ^{2} \beta \\
C_{\mathrm{n}_{\mathrm{s}}}(M, \alpha, \beta)=C_{\mathrm{n}_{2}}(M) \sin \beta \cos \alpha
\end{array}\right.
$$

Equation 4. Full Multivariable Regression model.

	Regression Model	SSE	R^{2}	RMSE
$C_{\mathrm{X}_{\mathrm{s}}}(M, \alpha, \beta)$	Test	$0.2 \cdot 10^{-2}$	85\%	$0.8 \cdot 10^{-2}$
	Formula	$0.1 \cdot 10^{-2}$	92\%	$0.6 \cdot 10^{-2}$
	Independent	$0.2 \cdot 10^{-2}$	75\%	$0.9 \cdot 10^{-2}$
$C_{Y_{\mathrm{s}}}(M, \alpha, \beta)$	Test	$0.4 \cdot 10^{-1}$	99\%	$0.4 \cdot 10^{-1}$
	Formula	$0.4 \cdot 10^{-1}$	99\%	$0.3 \cdot 10^{-1}$
	Independent	$0.3 \cdot 10^{-1}$	99\%	$0.2 \cdot 10^{-1}$
$C_{\mathrm{Z}_{\mathrm{s}}}(M, \alpha, \beta)$	Test	$0.6 \cdot 10^{-1}$	99\%	$0.4 \cdot 10^{-1}$
	Formula	$0.5 \cdot 10^{-1}$	99\%	$0.4 \cdot 10^{-1}$
	Independent	$0.4 \cdot 10^{-1}$	99\%	$0.3 \cdot 10^{-1}$
$C_{\mathrm{m}_{\mathrm{s}}}(M, \alpha, \beta)$	Test	0.2	70\%	0.8
	Formula	0.1	85\%	0.6
	Independent	0.2	75\%	0.8
$C_{\mathrm{n}_{\mathrm{s}}}(M, \alpha, \beta)$	Test	0.15	98\%	$0.6 \cdot 10^{-1}$
	Formula	0.12	98\%	$0.5 \cdot 10^{-1}$
	Independent	0.12	98\%	$0.5 \cdot 10^{-1}$

Table 4. Accuracy results related to the multivariable coefficient derivatives.

Since the Multivariable and the Simple Linear Regression Models are derived from different datasets, the previous statistical results do NOT allow a direct comparison of the two approaches.

Additional interpolation error comparison across the analyzed flight envelope ($\alpha^{\prime}, \phi^{\prime}, M$).
Error Analysis Algorithm
for ϕ^{\prime}
for M
for α^{\prime}

$$
\alpha, \beta=f\left(\alpha^{\prime}, \phi^{\prime}\right)
$$

CFD Data Interpolation

where,
n : length of α^{\prime} dataset
m : length of M dataset
l : length of ϕ^{\prime} dataset

Standard Deviation

$$
\sigma_{\mathrm{S}}\left(M, \phi^{\prime}, \alpha^{\prime}\right)=\sqrt{\frac{\sum_{i=1}^{n}\left(e_{\mathrm{S}_{i}}\left(M, \phi^{\prime}, \alpha^{\prime}\right)-\bar{e}_{\mathrm{S}}\left(M, \phi^{\prime}, \alpha^{\prime}\right)\right)^{2}}{n}}
$$

Figure 8. 3D table structure: example for the Simple Linear Error $e_{\text {S }}$.

Normalized Mean Error
$\bar{e}_{S_{\text {Norm }}}\left(M, \phi^{\prime}, \alpha^{\prime}\right)=\frac{\bar{e}_{\mathrm{S}}\left(M, \phi^{\prime}, \alpha^{\prime}\right)}{\bar{C}_{\mathrm{CFD}}\left(M, \phi^{\prime}, \alpha^{\prime}\right)} \quad,\left\{\begin{array}{l}\bar{e}_{\mathrm{S}}\left(M, \phi^{\prime}, \alpha^{\prime}\right)=\frac{\sum_{i=1}^{n}\left(C_{\mathrm{S}_{i}}\left(M, \phi^{\prime}, \alpha^{\prime}\right)-C_{\mathrm{CFD}_{i}}\left(M, \phi^{\prime}, \alpha^{\prime}\right)\right)}{n} \\ \bar{C}_{\mathrm{S}}\left(M, \phi^{\prime}, \alpha^{\prime}\right)=\frac{\sum_{i=1}^{n}\left(C_{\mathrm{S}_{i}}\left(M, \phi^{\prime}, \alpha^{\prime}\right)\right)}{n}\end{array}\right.$

Model Comparison: Statistical Error Analysis

Figure 9. Normalized mean error related to the vertical force: (a) $\phi^{\prime}=0$ [deg], (b) (c) (d) for increasing values of ϕ^{\prime}

For $\phi^{\prime}=0$ [deg], $\alpha^{\prime}=\alpha$: the results show how the Simple Linear Model provides higher accuracy than the Multivariable Model.

By increasing the roll (ϕ^{\prime}), and consequently, the impact of the sideslip angle (β) variation, the Multivariable Model shows better capability in modeling the aerodynamic behavior.

Model Comparison: Data Interpolation

In the case of forces/moments highly dependents only on one of the angle variation (α or β), the interpolated surfaces generated by the different approaches provide similar results, as in Figure 11.

However, in the case of high dependency on both the angle variations, the Simple Linear Regression shows its limited accuracy, as in Figures 12 and 13.

Figure 11. Interpolated surfaces comparison: vertical force.

Figure 13. Interpolated surfaces comparison: longitudinal force.

Identification of the most reliable regression model for each of the investigated approaches.

Thank you for your kind attention.

Any questions ?

Appendix

ISL - French-German Research Institute of Saint-Louis University Grenoble Alpes, Grenoble INP, GIPSA-lab

Gian Marco VINCO
Gian-Marco.Vinco@isl.eu

Cartesian Coordinates

$>\operatorname{Body}(\mathrm{B}): \vec{b}_{1}, \vec{b}_{2}, \vec{b}_{3}$.

* Coordinate axes.
$>\operatorname{Body}(\mathrm{B}): 1^{B}, 2^{B}, 3^{B}$
$>$ Wind (W): $1^{W}, 2^{W}, 3^{W}$.

Polar Coordinates

Figure 1. Regression accuracy results for the α coefficient derivatives: RMSE, R^{2}, and SSE, respectively for the longitudinal ((a),(b),(c)), the lateral ((d),(e),(f)) and the vertical ((g),(h),(i)) forces.

(a)

(d)

(h)

(c)

(f)

Figure 2. Regression accuracy results for the α coefficient derivatives: RMSE, R^{2}, and SSE, respectively for the roll ((a),(b),(c)), the pitch ((d),(e),(f)) and the yaw ((g),(h),(i)) moments.

Figure 3. Interpolations results of the α coefficient derivatives:
\Rightarrow (a) longitudinal force,
> (b) lateral force,
$>$ (c) vertical force,
$>$ (d) pitch moment,
(e) yaw moment.

Figure 4. Regression accuracy results for the β coefficient derivatives: RMSE, R^{2}, and SSE, respectively for the longitudinal ((a),(b),(c)), the lateral ((d),(e),(f)) and the vertical ((g),(h),(i)) forces.

Figure 5. Regression accuracy results for the β coefficient derivatives: RMSE, \mathbf{R}^{2}, and SSE, respectively for the roll ((a),(b),(c)), the pitch ((d),(e),(f)) and the yaw ((g),(h),(i)) moments.

Figure 6. Interpolations results of the β coefficient derivatives:
\Rightarrow (a) longitudinal force,
(b) lateral force,
$>$ (c) vertical force,
$>$ (d) pitch moment,
(e) yaw moment.

Flight Mechanics EoM: Aerodynamic Forces ${ }^{[1]}{ }^{[2]}$
$\left[f_{\mathrm{B}}^{\mathrm{P}}\right]^{\mathrm{B}}=\bar{q} S\left[\begin{array}{c}\left.-\left(C_{\mathrm{D}} \cos \alpha \cos \beta-\left(C_{\mathrm{L}_{\alpha}}\right) 1-\cos ^{2} \alpha \cos ^{2} \beta\right)\right) \\ -\left(C_{\mathrm{D}}+C_{\mathrm{L}_{\alpha}} \cos \alpha \cos \beta\right) \sin \beta \\ -\left(C_{\mathrm{D}}+C_{\mathrm{L}_{\alpha}} \cos \alpha \cos \beta\right) \cos \beta \sin \alpha\end{array}\right]=\bar{q} S\left[\begin{array}{c}-C_{\mathrm{A}_{\mathrm{S}}} \\ -C_{\mathrm{N}_{\alpha}} \sin \beta \\ -C_{\mathrm{N}_{\alpha}} \cos \beta \sin \alpha\end{array}\right]=\bar{q} S\left[\begin{array}{c}-C_{\mathrm{A}_{\mathrm{S}}} \\ +C_{\mathrm{Y}_{\mathrm{S}}} \\ -C_{\mathrm{N}_{\mathrm{S}}}\end{array}\right]=\bar{q} S\left[\begin{array}{c}+C_{\mathrm{X}_{\mathrm{S}}} \\ +C_{\mathrm{Y}_{\mathrm{S}}} \\ +C_{\mathrm{Z}_{\mathrm{S}}}\end{array}\right]$

Multivariable Regression Model

$C_{\mathrm{X}_{\mathrm{s}}}(M, \alpha, \beta)=C_{\mathrm{X}_{0}}(M)+C_{\mathrm{X}_{2}}(M) \cos \alpha \cos \beta+C_{\mathrm{X}_{4}}(M) \cos ^{2} \alpha \cos ^{2} \beta$
$C_{Y_{\mathrm{S}}}(M, \alpha, \beta)=C_{\mathrm{Y}_{2}}(M) \sin \beta \cos \alpha$
$C_{\mathrm{Z}_{\mathrm{s}}}(M, \alpha, \beta)=C_{\mathrm{Z}_{2}}(M) \sin \alpha \cos \beta$
$C_{\mathrm{X}} \begin{cases}\mathrm{T}: & C_{\mathrm{X}}(M, \alpha, \beta)=C_{\mathrm{X}_{0}}(M)+C_{\mathrm{X}_{2}}(M)\left(\sin ^{2} \alpha+\sin ^{2} \beta\right)+C_{\mathrm{X}_{4}}(M)\left(\sin ^{4} \alpha+\sin ^{4} \beta\right) \\ \mathrm{F}: & C_{\mathrm{X}}(M, \alpha, \beta)=C_{\mathrm{X}_{0}}(M)+C_{\mathrm{X}_{2}}(M) \cos \alpha \cos \beta+C_{\mathrm{X}_{4}}(M) \cos ^{2} \alpha \cos ^{2} \beta \\ \mathrm{I} & C_{\mathrm{X}}(M, \alpha, \beta)=C_{\mathrm{X}_{0}}(M)+C_{\mathrm{X}_{\alpha 2}}(M) \sin ^{2} \alpha+C_{\mathrm{X}_{\beta 2}}(M) \sin ^{2} \beta+C_{\mathrm{X}_{\alpha 4}}(M) \sin ^{4} \alpha+C_{\mathrm{X}_{\beta 4}}(M) \sin ^{4} \beta\end{cases}$
$C_{\mathrm{Y}} \begin{cases}\mathrm{T}: & C_{\mathrm{Y}}(M, \alpha, \beta)=C_{\mathrm{Y}_{1}}(M) \sin \beta \cos \alpha+C_{\mathrm{Y}_{3}}(M) \sin ^{3} \beta \cos \alpha \\ \mathrm{~F}: & C_{\mathrm{Y}}(M, \alpha, \beta)=C_{\mathrm{Y}_{\beta}}(M) \sin \beta \cos \alpha \\ \mathrm{I} & C_{\mathrm{Y}}(M, \alpha, \beta)=C_{\mathrm{Y}_{\beta 1}}(M) \sin \beta+C_{\mathrm{Y}_{\alpha 1}}(M) \sin \alpha\end{cases}$
$C_{\mathrm{Z}} \begin{cases}\mathrm{T}: & C_{\mathrm{Z}}(M, \alpha, \beta)=C_{\mathrm{Z}_{1}}(M) \sin \alpha \cos \beta+C_{\mathrm{Z}_{3}}(M) \sin ^{3} \alpha \cos \beta \\ \mathrm{~F}: & C_{\mathrm{Z}}(M, \alpha, \beta)=C_{\mathrm{Z}_{1}}(M) \sin \alpha \cos \beta \\ \mathrm{I}: & C_{\mathrm{Z}}(M, \alpha, \beta)=C_{\mathrm{Z}_{\alpha 1}}(M) \sin \alpha+C_{\mathrm{Z}_{\beta 1}}(M) \sin \beta\end{cases}$
$C_{\mathrm{m}}\left\{\begin{array}{l}\mathrm{T}: \quad C_{\mathrm{m}}(M, \alpha, \beta)=C_{\mathrm{m}_{1}}(M) \sin \alpha \cos \beta+C_{\mathrm{m}_{3}}(M) \sin ^{3} \alpha \cos \beta \\ \mathrm{~F}: \quad C_{\mathrm{m}}(M, \alpha, \beta)=C_{\mathrm{m}_{1}}(M) \sin \alpha \cos \beta+C_{\mathrm{m}_{3}}(M) \sin \alpha \cos \alpha \cos ^{2} \beta \\ \mathrm{I}: \quad C_{\mathrm{m}}(M, \alpha, \beta)=C_{\mathrm{m}_{\alpha 1}}(M) \sin \alpha+C_{\mathrm{m}_{\beta 1}}(M) \sin \beta+C_{\mathrm{m}_{a 3}}(M) \sin ^{3} \alpha+C_{\mathrm{m}_{\beta 3}}(M) \sin ^{3} \beta\end{array}\right.$

T:Test

F: Formula

I : Independent

Figure 7. Regression accuracy results for the $\alpha \& \beta$ coefficient derivatives: RMSE, R^{2}, and SSE, respectively for the longitudinal ((a),(b),(c)), the lateral ((d),(e),(f)) and the vertical ((g),(h),(i)) forces.

Figure 5. Regression accuracy results for the $\alpha \& \beta$ coefficient derivatives : RMSE, R^{2}, and SSE, respectively for the pitch ((a),(b),(c)) and the yaw ((d),(e),(f)) moments.

Figure 9. Interpolations results of the $\alpha \& \beta$ coefficient derivatives:
> (a) longitudinal force,
(b) lateral force,
$>$ (c) vertical force,
(d) pitch moment
(e) yaw moment.

Appendix : Normalized Mean Error Results

Figure 10. Models comparison results: Normalized Mean Error for increasing values of the roll angle ϕ^{\prime}, starting from $\phi^{\prime}=0$ [deg] for the (a) and (I) plot column, up to $\phi^{\prime}=90$ [deg] for the (e) and (i) plot column. In particular, the graphs show the comparison results for the longitudinal (a)(b)(c)(d)(e), the lateral $(\mathrm{f})(\mathrm{g})(\mathrm{h})(\mathrm{i})$ and the vertical $(\mathrm{l})(\mathrm{m})(\mathrm{n})(\mathrm{o})$ forces.

Figure 11. Models comparison results: Normalized Mean Error for increasing values of the roll angle ϕ^{\prime}, starting from $\phi^{\prime}=0$ [deg] for the (a) and (I) plot column, up to $\phi^{\prime}=90[\mathrm{deg}]$ for the (e) and (i) plot column. In particular, the graphs show the comparison results for the pitch (a)(b)(c)(d) and the yaw $(e)(f)(g)(h)$ moments.

Appendix : Standard Deviation Results

Figure 12. Models comparison results: Standard Deviation for increasing values of the roll angle ϕ^{\prime}, starting from $\phi^{\prime}=0$ [deg] for the (a) and (I) plot column, up to $\phi^{\prime}=90[\mathrm{deg}]$ for the (e) and (i) plot column. In particular, the graphs show the comparison results for the longitudinal (a)(b)(c)(d)(e), the lateral $(\mathrm{f})(\mathrm{g})(\mathrm{h})(\mathrm{i})$ and the vertical $(\mathrm{I})(\mathrm{m})(\mathrm{n})(\mathrm{o})$ forces.

Appendix : Standard Deviation Results

Figure 13. Models comparison results: Standard Deviation for increasing values of the roll angle ϕ^{\prime}, starting from $\phi^{\prime}=0$ [deg] for the (a) and (I) plot column, up to $\phi^{\prime}=90[\mathrm{deg}]$ for the (e) and (i) plot column. In particular, the graphs show the comparison results for the pitch (a)(b)(c)(d) and the yaw (e)(f)(g)(h) moments.

(a)

(d)

(b)

(e)

(c)

Figure 14. Interpolations results comparison between the Simple Linear Regression and the Multivariable Regression models:
$>$ (a) longitudinal force,
$>$ (b) lateral force,
$>$ (c) vertical force,
$>$ (d) pitch moment,
$>$ (e) yaw moment.

[^0]: Equation 1. Aerodynamic coordinates relations.

